Search results for "Membrane Lipids"

showing 10 items of 80 documents

Impact of 7-Ketocholesterol and Very Long Chain Fatty Acids on Oligodendrocyte Lipid Membrane Organization: Evaluation Via LAURDAN and FAMIS Spectral…

2011

International audience; In the context of multiple sclerosis and X-linked adrenoleukodystrophy, 7-ketocholesterol (7KC) and very long chain fatty acids (C24:0, C26:0) are supposed to induce side effects respectively on oligodendrocytes which are myelin (which is a lipoproteic complex) synthesizing cells. The effects of 7KC (25, 50 mu M), C24:0 and C26:0 (10, 20 mu M) on cell viability and lipid membrane organization were investigated on 158N murine oligodendrocytes. Concerning 7KC and fatty acids (at 20 mu M only):1) cell growth was strongly inhibited; 2) marked induction of cell death was revealed with propidium iodide (PI); 3) no apoptotic cells were found with C24:0 and C26:0 (absence of…

MaleMYELINlaw.inventionchemistry.chemical_compoundMice0302 clinical medicinelawFAMIS2-Naphthylamine[SDV.IDA]Life Sciences [q-bio]/Food engineeringEnzyme InhibitorsLipid bilayerKetocholesterols0303 health sciencesMicroscopy ConfocalOXYSTEROLSFatty AcidsMULTIPLE-SCLEROSISvery long chain fatty acidsCell biologyPEROXISOMAL DISORDERSAPOPTOSISOligodendrogliaX-LINKED ADRENOLEUKODYSTROPHYmedicine.anatomical_structureMembraneCHOLESTEROL OXIDESlipids (amino acids peptides and proteins)Laurdanalpha-CyclodextrinsHistologyContext (language use)BiologyMETABOLISMPathology and Forensic Medicine158N oligodendrocytes03 medical and health sciencesMembrane LipidsConfocal microscopymedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringViability assayPropidium iodideLAURDAN7-ketocholesterol030304 developmental biologyFluorescent DyesCell MembraneCENTRAL-NERVOUS-SYSTEMCell BiologyOligodendrocytechemistryCELLSmono-photon confocal microscopy030217 neurology & neurosurgeryLaurates
researchProduct

2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy

2012

Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells bef…

MaleProgrammed cell deathTime FactorsCell SurvivalMAP Kinase Signaling SystemCellular differentiationMice NudeAntineoplastic AgentsOleic AcidsBiologyglioma biomarkerfatty acidsMembrane LipidsMicePhosphatidylinositol 3-Kinases2-Hydroxyoleic AcidGliomaCell Line TumormedicineAutophagyTemozolomideAnimalsHumansPI3K/AKT/mTOR pathwayCell ProliferationMultidisciplinaryTemozolomideMicroscopy ConfocalDose-Response Relationship DrugCell growthCell MembraneRetinoblastoma proteinCell DifferentiationGliomaBiological Sciencesmedicine.diseaseXenograft Model Antitumor AssaysCell biologyDacarbazineProtein TransportCancer researchbiology.proteinras Proteinssphingomyelin synthaseProto-Oncogene Proteins c-aktcancer drug targetmedicine.drug
researchProduct

The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis.

2008

AbstractMost biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in mem…

Membrane FluidityMembrane lipidsBiophysicsDistributionMolecular dynamicsBiology010402 general chemistry01 natural sciencesBiochemistryModels BiologicalPolar membrane03 medical and health sciencesMembrane LipidsMembrane MicrodomainsMembrane fluidityAnimalsHomeostasisHumansComputer SimulationPhospholipaseLipid bilayer phase behaviorDomain030304 developmental biology0303 health sciencesMembranesMolecular StructureErythrocyte MembraneBiological membraneCell BiologyMembrane transportModels TheoreticalLipid MetabolismLipids0104 chemical sciencesCell biologyErythrocytePhospholipidCholesterolMembraneBiophysicsModelElasticity of cell membranesBiochimica et biophysica acta
researchProduct

Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipid membrane: film balance and scanning probe micros…

2004

The molecular interaction of quercetin-3-O-palmitate (QP) with dimyristoylphosphatidylcholine (DMPC) has been studied. Film balance measurements of the average molecular area vs QP molar fraction in DMPC/QP mixed monolayers showed that relevant positive deviations from ideality, i.e., a less dense monolayer packing, occurred for a temperature of 10 degrees C, below the critical melting transition temperature of DMPC monolayers T c m approximately equal 20 degrees C), while ideal behavior was observed at 37 degrees C, above this phase transition temperature. The positive deviation observed at low temperatures in the average molecular area increased with the surface pressure. Scanning probe m…

Membrane FluiditySurface PropertiesLipid BilayersAnalytical chemistryPhospholipidPalmitic AcidPhase separationPalmitic AcidsSurface pressureMole fractionMicroscopy Atomic ForcePhase TransitionBiomaterialsScanning probe microscopychemistry.chemical_compoundMembrane LipidsColloid and Surface ChemistryMonolayerLangmuir-Blodgett monolayersMolecular StructureTransition temperatureTemperatureQuercetin palmitateSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsLangmuir–Blodgett monolayerMembranechemistryAluminum SilicatesQuercetinMicaStress MechanicalDimyristoylphosphatidylcholineAlgorithmsScanning force microscopy
researchProduct

Role of membrane dynamics processes and exogenous molecules in cellular resveratrol uptake: consequences in bioavailability and activities.

2011

In the fields of nutrition prevention and therapy treatment, numerous studies have reported interesting properties of trans-resveratrol (RSV), a natural polyphenol against pathologies such as vascular diseases, cancers, viral infections and neurodegenerative processes. These beneficial effects are supported by more studies showing the pleiotropic actions of RSV. Nevertheless, a crucial question concerning these effects is how the polyphenol, when applied to an organism, gains access to its targets. In this review, we focus on the biochemical and biological parameters involved in RSV transport, particularly the role of the phospholipid bilayer in RSV uptake (passive diffusion, carrier-mediat…

Membrane FluidityvirusesLipoproteinsIntegrinEstrogen receptorBiological AvailabilityResveratrolEndocytosischemistry.chemical_compoundMembrane LipidsMembrane MicrodomainsCell surface receptorStilbenesAnimalsHumansReceptorLipid raftbiologyCell MembraneFatty Acidsvirus diseasesBiological TransportSerum Albumin Bovinerespiratory systemIntegrin alphaVbeta3EndocytosisCell biologyBiochemistrychemistryResveratrolbiology.proteinIntracellularFood ScienceBiotechnologyMolecular nutritionfood research
researchProduct

(19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids.

2014

AbstractMany amphiphilic antimicrobial peptides permeabilize bacterial membranes via successive steps of binding, re-alignment and/or oligomerization. Here, we have systematically compared the lipid interactions of two structurally unrelated peptides: the cyclic β-pleated gramicidin S (GS), and the α-helical PGLa. 19F NMR was used to screen their molecular alignment in various model membranes over a wide range of temperatures. Both peptides were found to respond to the phase state and composition of these different samples in a similar way. In phosphatidylcholines, both peptides first bind to the bilayer surface. Above a certain threshold concentration they can re-align and immerse more dee…

Membrane lipidsAntimicrobial peptidesAmphiphilic antimicrobial peptidesLipid BilayersBiophysicsBiochemistryProtein Structure Secondarychemistry.chemical_compoundMembrane LipidsHumansAmino Acid SequenceProtein PrecursorsLipid bilayerNuclear Magnetic Resonance BiomolecularBacteriaBilayerPeripheral membrane proteinLipid compositionCell MembraneGramicidinBiological membraneRe-alignment in membraneCell BiologyMembraneBiochemistrychemistryGramicidinBiophysicsBacterial membranesSpontaneous curvatureSolid state 19F NMR structure analysis
researchProduct

Cholesterol-Like Effects of Selective Cyclooxygenase Inhibitors and Fibrates on Cellular Membranes and Amyloid-β Production

2007

Strong evidence suggests a mechanistic link between cholesterol metabolism and the formation of amyloid-beta peptides, the principal constituents of senile plaques found in the brains of patients with Alzheimer's disease. Here, we show that several fibrates and diaryl heterocycle cyclooxygenase inhibitors, among them the commonly used drugs fenofibrate and celecoxib, exhibit effects similar to those of cholesterol on cellular membranes and amyloid precursor protein (APP) processing. These drugs have the same effects on membrane rigidity as cholesterol, monitored here by an increase in fluorescence anisotropy. The effect of the drugs on cellular membranes was also reflected in the inhibitory…

Membrane lipidsCHO CellsPharmacologyAmyloid beta-Protein PrecursorMicechemistry.chemical_compoundCricetulusFenofibrateCell Line TumorCricetinaeAmyloid precursor proteinmedicineMembrane fluidityAnimalsAspartic Acid EndopeptidasesCyclooxygenase InhibitorsClofibrateSenile plaquesPharmacologySulfonamidesAmyloid beta-PeptidesFenofibratebiologyCholesterolCell MembraneCholesterolMembranechemistryBiochemistryCelecoxibbiology.proteinPyrazolesMolecular MedicineCyclooxygenaseAmyloid Precursor Protein Secretasesmedicine.drugMolecular Pharmacology
researchProduct

Membrane-penetrating Domain of Streptolysin O Identified by Cysteine Scanning Mutagenesis

1996

Streptolysin O (SLO), a polypeptide of 571 amino acids, belongs to a family of highly homologous toxins that bind to cell membranes containing cholesterol and then polymerize to form large transmembrane pores. A conserved region close to the C terminus contains the single cysteine residue of SLO and has been implicated in membrane binding, which has been the only clear assignment of function to a part of the sequence. We have used a cysteine-less active mutant of SLO to introduce single cysteine residues at 19 positions distributed throughout the sequence. The cysteines were derivatized with the polarity-sensitive fluorophore acrylodan, and the fluorescence emission of the label was examine…

Membrane lipidsDetergentsBiochemistryCell membraneBiopolymersBacterial Proteins2-NaphthylaminemedicineCysteineCloning MolecularLipid bilayerMolecular Biologychemistry.chemical_classificationC-terminusCell MembraneCell BiologyTransmembrane proteinAmino acidmedicine.anatomical_structureSolubilitychemistryBiochemistryMutagenesisStreptolysinsStreptolysinCysteineJournal of Biological Chemistry
researchProduct

Membrane potential-dependent binding of polysialic acid to lipid monolayers and bilayers

2013

AbstractPolysialic acids are linear polysaccharides composed of sialic acid monomers. These polyanionic chains are usually membrane-bound, and are expressed on the surfaces of neural, tumor and neuroinvasive bacterial cells. We used toluidine blue spectroscopy, the Langmuir monolayer technique and fluorescence spectroscopy to study the effects of membrane surface potential and transmembrane potential on the binding of polysialic acids to lipid bilayers and monolayers. Polysialic acid free in solution was added to the bathing solution to assess the metachromatic shift in the absorption spectra of toluidine blue, the temperature dependence of the fluorescence anisotropy of DPH in liposomes, t…

Membrane lipidsLipid BilayersFluorescence PolarizationPolysialic acidBiochemistryMembrane PotentialsCell membraneLipid bilayerMembrane LipidsmedicineLipid bilayerMolecular BiologyMembrane potentialMembrane potentialLiposomeChemistryPolysialic acidVesicleCell MembraneCell BiologyLipid monolayerDPH anisotropyLiposomeMembranemedicine.anatomical_structureBiochemistryLiposomesBiophysicsSialic AcidsPolyanionResearch ArticleCellular & Molecular Biology Letters
researchProduct

Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural t…

2006

In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the con…

Membrane lipidsLipid BilayersMolecular ConformationBiophysicsSynthetic membranebilayer lipidBilayer lipidXanthophyllsBiologyXanthophyll cycleThylakoidsBiochemistryThylakoid membraneMembrane Lipidschemistry.chemical_compoundNon-bilayer lipidMembrane fluidityLipid bilayer phase behaviorDiadinoxanthinInverted hexagonal phaseUnilamellar LiposomesDiatomsPhosphatidylethanolamineLiposomeGalactolipidsPhosphatidylethanolaminesBilayerHexagonal phaseWaterxanthophyll cycleMembranes ArtificialCell Biologythylakoid membraneinverted hexagonal phaseKineticsCrystallographydiadinoxanthinSolubilitychemistryOxygenasesPhosphatidylcholinesnon-bilayer lipidlipids (amino acids peptides and proteins)
researchProduct