Search results for "Memetic algorithm"
showing 10 items of 38 documents
Fitness diversity based adaptation in Multimeme Algorithms:A comparative study
2007
This paper compares three different fitness diversity adaptations in multimeme algorithms (MmAs). These diversity indexes have been integrated within a MmA present in literature, namely fast adaptive memetic algorithm. Numerical results show that it is not possible to establish a superiority of one of these adaptive schemes over the others and choice of a proper adaptation must be made by considering features of the problem under study. More specifically, one of these adaptations outperforms the others in the presence of plateaus or limited range of variability in fitness values, another adaptation is more proper for landscapes having distant and strong basins of attraction, the third one, …
A hybrid genetic algorithm with local search: I. Discrete variables: optimisation of complementary mobile phases
2001
Abstract A hybrid genetic algorithm was developed for a combinatorial optimisation problem. The assayed hybridation modifies the reproduction pattern of the genetic algorithm through the application of a local search method, which enhances each individual in each generation. The method is applied to the optimisation of the mobile phase composition in liquid chromatography, using two or more mobile phases of complementary behaviour. Each of these phases concerns the optimal separation of certain compounds in the analysed mixture, while the others can remain overlapped. This optimisation approach may be useful in situations where full resolution with a single mobile phase is unfeasible. The o…
Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms
2008
This chapter proposes a novel adaptive memetic approach for solving multi-objective optimization problems. The proposed approach introduces the novel concept of crossdominance and employs this concept within a novel probabilistic scheme which makes use of the Wigner distribution for performing coordination of the local search. Thus, two local searchers are integrated within an evolutionary framework which resorts to an evolutionary algorithm previously proposed in literature for solving multi-objective problems. These two local searchers are a multi-objective version of simulated annealing and a novel multi-objective implementation of the Rosenbrock algorithm.
An enhanced memetic differential evolution in filter design for defect detection in paper production.
2008
This article proposes an Enhanced Memetic Differential Evolution (EMDE) for designing digital filters which aim at detecting defects of the paper produced during an industrial process. Defect detection is handled by means of two Gabor filters and their design is performed by the EMDE. The EMDE is a novel adaptive evolutionary algorithm which combines the powerful explorative features of Differential Evolution with the exploitative features of three local search algorithms employing different pivot rules and neighborhood generating functions. These local search algorithms are the Hooke Jeeves Algorithm, a Stochastic Local Search, and Simulated Annealing. The local search algorithms are adap…
Differential Evolution with Fitness Diversity Self-adaptation
2009
This chapter proposes the integration of fitness diversity adaptation techniques within the parameter setting of Differential Evolution (DE). The scale factor and crossover rate are encoded within each genotype and self-adaptively updated during the evolution by means of a probabilistic criterion which takes into account the diversity properties of the entire population. The population size is also adaptively controlled by means of a novel technique based on a measurement of the fitness diversity. An extensive experimental setup has been implemented by including multivariate problems and hard to solve fitness landscapes. A comparison of the performance has been conducted by considering both…
An adaptive multimeme algorithm for designing HIV multidrug therapies.
2007
This paper proposes a period representation for modeling the multidrug HIV therapies and an Adaptive Multimeme Algorithm (AMmA) for designing the optimal therapy. The period representation offers benefits in terms of flexibility and reduction in dimensionality compared to the binary representation. The AMmA is a memetic algorithm which employs a list of three local searchers adaptively activated by an evolutionary framework. These local searchers, having different features according to the exploration logic and the pivot rule, have the role of exploring the decision space from different and complementary perspectives and, thus, assisting the standard evolutionary operators in the optimizati…
Efficient Local Search Limitation Strategies for Vehicle Routing Problems
2008
In this paper we examine five different strategies for limiting the local search neighborhoods in the context of vehicle routing problems. The vehicle routing problem deals with the assignment of a set of transportation orders to a fleet of vehicles, and the sequencing of stops for each vehicle to minimize transportation costs. The examined strategies are applied to three standard neighborhoods and implemented in a recently suggested powerful memetic algorithm. Experimental results on 26 well-known benchmark problems indicate significant speedups of almost 80% without worsening the solution quality. On the contrary, in 12 cases new best solutions were obtained.
A memetic approach to discrete tomography from noisy projections
2010
Discrete tomography deals with the reconstruction of images from very few projections, which is, in the general case, an NP-hard problem. This paper describes a new memetic reconstruction algorithm. It generates a set of initial images by network flows, related to two of the input projections, and lets them evolve towards a possible solution, by using crossover and mutation. Switch and compactness operators improve the quality of the reconstructed images during each generation, while the selection of the best images addresses the evolution to an optimal result. One of the most important issues in discrete tomography is known as the stability problem and it is tackled here, in the case of no…
A Memetic Island Model for Discrete Tomography Reconstruction
2011
Soft computing is a term indicating a coalition of methodologies, and its basic dogma is that, in general, better results can be obtained through the use of constituent methodologies in combination, rather than in a stand alone mode. Evolutionary computing belongs to this coalition, and thus memetic algorithms. Here, we present a combination of several instances of a recently proposed memetic algorithm for discrete tomography reconstruction, based on the island model parallel implementation. The combination is motivated by the fact that, even though the results of the recently proposed approach are finally better and more robust compared to other approaches, we advised that its major drawba…
Memetic algorithms and memetic computing optimization: A literature review
2012
Abstract Memetic computing is a subject in computer science which considers complex structures such as the combination of simple agents and memes, whose evolutionary interactions lead to intelligent complexes capable of problem-solving. The founding cornerstone of this subject has been the concept of memetic algorithms, that is a class of optimization algorithms whose structure is characterized by an evolutionary framework and a list of local search components. This article presents a broad literature review on this subject focused on optimization problems. Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties…