Search results for "Meri"

showing 10 items of 7596 documents

The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions

2019

Recent geophysical observations report the presence of a very weak and thin upper asthenosphere underneath subducting oceanic plates at convergent margins. Along these margins, trench migrations are significantly slower than plate convergence rates. We use numerical models to assess the role of a weak upper asthenospheric layer on plate and trench motions. We show that the presence of this layer alone can enhance an advancing trend for the motion of the plate and hamper trench retreat. This mechanism provides a novel and alternative explanation for the slow rates of trench migration and fast-moving plates observed globally at natural subduction zones.

010504 meteorology & atmospheric sciencesSubductionNumerical models010502 geochemistry & geophysics01 natural sciencesGeophysicsMantle convectionAsthenosphereOceanic crustLithosphereTransition zoneTrenchGeneral Earth and Planetary SciencesPetrologyGeology0105 earth and related environmental sciencesGeophysical Research Letters
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply

2019

International audience; Oceanic detachment faulting is a major mode of seafloor accretion at slow and ultraslow spreading mid-ocean ridges, and is associated with dramatic changes in seafloor morphology. Detachments form expansive dome structures with corrugated surfaces known as oceanic core complexes (OCCs), and often transition to multiple regularly-spaced normal faults that form abyssal hills parallel to the spreading axis. Previous studies have attributed these changes to along-axis gradients in lithospheric strength or magma supply. However, despite the recognition that magma supply can influence fault style and seafloor morphology, the mechanics controlling the transition from oceani…

010504 meteorology & atmospheric sciences[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]Fault (geology)010502 geochemistry & geophysics01 natural sciencesGeochemistry and PetrologyLithospheremagmatismEarth and Planetary Sciences (miscellaneous)PetrologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonicsgeographyoceanic core complexesgeography.geographical_feature_categoryMid-ocean ridgeSeafloor spreadingDetachment faultnumerical modelingGeophysicsSpace and Planetary ScienceRidgeAbyssal hillMagmatismmid-ocean ridgesmarine geologyfaultingGeologyEarth and Planetary Science Letters
researchProduct

Modelling of stylolite geometries and stress scaling

2012

International audience; In this contribution we present numerical simulations of stylolite growth to decipher the effects of initial rock heterogeneity and stress on their morphology. We show that stylolite growth in a rock with a uniform grain size produces different patterns than stylolite growth in a rock with a bimodal grain size distribution. Strong pinning of large heterogeneities produce stylolite structures that are dominated by pronounced teeth, whereas a uniform grain size leads to spikes and a roughness that shows variable wavelengths. We compare the simulated stylolites with natural examples and show that the model can reproduce the real structures. In addition we show that stro…

010504 meteorology & atmospheric sciences[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]stress-gauge[SDE.MCG]Environmental Sciences/Global ChangesCompaction[SDU.STU]Sciences of the Universe [physics]/Earth Sciences[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]Surface finishpressure solution010502 geochemistry & geophysics01 natural sciencesPhysics::Geophysics[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Stress (mechanics)Geochemistry and Petrology[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Earth and Planetary Sciences (miscellaneous)compactionGeotechnical engineeringScaling0105 earth and related environmental sciencesstyloliteMechanicsself-affinityGrain sizeGeophysicsSpace and Planetary ScienceStyloliteParticle-size distributionPressure solutionnumerical modelGeology[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/MineralogyEarth and Planetary Science Letters
researchProduct

Models and data analysis tools for the Solar Orbiter mission

2020

All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…

010504 meteorology & atmospheric sciencescorona [Sun]Solar windAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]7. Clean energy01 natural scienceslaw.inventionData acquisitionlawCoronal mass ejectiongeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsQCComputingMilieux_MISCELLANEOUSQBPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]3rd-DASenergetic particlesSolar windCORONAL MASS EJECTIONSnumerical modelingmagnetic fields [Sun]solar windPhysics::Space PhysicsSystems engineeringAstrophysics::Earth and Planetary Astrophysicsatmosphere [Sun]fundamental parameters [Sun]Sun: generalFORCE-FREE FIELDSun: fundamental parametersSolar radiusContext (language use)STREAMER STRUCTUREOrbiter0103 physical sciencesOPTIMIZATION APPROACH[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]POLARIZATION MEASUREMENTSSun: Solar wind3-DIMENSIONAL STRUCTURE0105 earth and related environmental sciencesSpacecraftbusiness.industrySun: corona[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]solar coronaMAGNETIC-FLUX ROPESAstronomy and AstrophysicsSHOCKS DRIVEN115 Astronomy Space scienceSPECTRAL-LINESQC Physics13. Climate actionSpace and Planetary SciencebusinessHeliosphereSun: atmosphereELECTRON-DENSITY
researchProduct

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

2021

Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…

010504 meteorology & atmospheric sciencesdimension: 3neutron star: magnetic fieldtorusAstrophysicsMagnetar01 natural sciencesrotationstarstrong fieldMagnetarsAstrophysics::Solar and Stellar Astrophysicsgravitational radiation: spectrumgravitational radiation: signatureSupernova core collapse010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMethods numerical[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]formationscalingSupernovaAmplitudeAstrophysics - Solar and Stellar AstrophysicsConvection zoneAstrophysics - High Energy Astrophysical PhenomenaDynamosupernova: collapseprotoneutron starFOS: Physical sciencesConvectionsymmetry: axialGravitational waves0103 physical sciencesstructurenumerical calculationsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGravitational waveAstronomy and AstrophysicsmagnetarNeutron star13. Climate actionSpace and Planetary Scienceefficiencygravitational radiation: emissionMagnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph]
researchProduct

Captación y selección de materias primas en la primera metalurgia del Sureste de la península ibérica

2020

The authors are grateful for the technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF). We are also in debt with Eduardo Galán, Ruth Maicas and Carmen Cacho, curators of the Museo Arqueológico Nacional (Madrid) for facilitating the sampling and study of metal objects as well as with Ignacio Soriano Llopis for his help on the selection and sampling of the Palmela points, with Massimo Chiaradia who performed the analyses of the Palmela points at the Department of Earth Sciences (University of Geneva, Switzerland) and with Óscar García Vuelta for his pictures of some assemblages. We also appreciate and the careful work of editing and style of the TP edit…

010506 paleontologyArcheology[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryLead isotope analysisestudios de procedenciaRaw materialStructural basinProvenance Studies01 natural sciencesAnálisis de Isótopos de Plomosudeste de la península ibéricaSoutheast IberiaProcurementSudeste de la Península IbéricaEstudios de ProcedenciaArqueometalurgiaHuman settlement0601 history and archaeologyArchaeometallurgyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[SHS.ARCHEO] Humanities and Social Sciences/Archaeology and Prehistory060102 archaeologybiologyMetallurgyTrace elementanálisis de isótopos de plomoLead Isotope Analysis06 humanities and the artsChalcolithicCalcolíticobiology.organism_classificationChalcolithicAlmeriaarqueometalurgiaGeographyArchaeology13. Climate actionWestern europecalcolíticoCC1-960Trabajos de Prehistoria
researchProduct

Sr isotope variations in the Upper Triassic succession at Pizzo Mondello, Sicily: Constraints on the timing of the Cimmerian Orogeny

2018

Abstract The Late Triassic Cimmerian Orogeny was a result of the final closure of the Palaeotethys Ocean and the accretion of Gondwana-derived (Cimmerian) continents to southern Eurasia. Determining the timing of the Cimmerian Orogeny is crucial to our understanding of the large-scale climate changes driven by the uplift of the Cimmerian Mountains. Here we present stratigraphic variations in 87Sr/86Sr values of Upper Triassic pelagic limestone from the Pizzo Mondello section, Sicily, Italy, that constrain the timing of uplift of the Cimmerian Mountains. The 87Sr/86Sr values remain relatively constant in the lower part of the section, decreasing slightly in the Tuvalian (upper Carnian) and L…

010506 paleontologyCarnian; Cimmerian Mountains; Climate change; Limestone; Norian; Tethys; Oceanography; Ecology Evolution Behavior and Systematics; Earth-Surface Processes; PaleontologyEvolutionCimmerian MountainsClimate changeWeatheringEcological succession010502 geochemistry & geophysicsNorianOceanography01 natural sciencesPaleontologyBehavior and SystematicsClimate changeTethysEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface ProcessesCarnianRadiogenic nuclideEcologyPaleontologyOrogenyTethys OceanLimestoneErosionAccretion (geology)Geology
researchProduct

A North American ammonite fauna from the late Middle Turonian of Vaucluse and Gard, southern France: the Romaniceras mexicanum, Prionocyclus hyatti a…

2016

Abstract An unusual, exotic, ammonite fauna including Romaniceras mexicanum Jones, 1938, Prionocyclus hyatti (Stanton, 1894) and Coilopoceras cf. springeri Hyatt, 1903 is recorded from the late Middle Turonian of Vaucluse and Gard, southern France. It is the first record of this ammonite association outside the Gulf Coast region and the Western Interior of the United States of North America. Up to present, these species were considered as endemic to the Western Interior sea-way. The migration of numerous ammonites from North America to western Europe during the late Middle Turonian suggests it is linked to a transgressive event or to a short sea-level high.

010506 paleontologyCoilopocerasFauna010502 geochemistry & geophysics01 natural sciencesCretaceousAmmonitidaPaleontologyAmmonitesMigration[ SDU.STU.PG ] Sciences of the Universe [physics]/Earth Sciences/Paleontology0105 earth and related environmental sciencesAmmonitebiologyTransgressive eventGeologyTuronianbiology.organism_classificationlanguage.human_languageCretaceousSouthern FranceWestern europeNorth AmericalanguageTransgressiveGeologyActa Geologica Polonica
researchProduct

Palynofacies and calcareous nannofossils in the Upper Kimmeridgian, southeastern Paris basin (France)

2005

AbstractThe Upper Kimmeridgian Members “Calcaires blancs supérieurs” and the “Marnes à exogyres supérieures” of the southeastern Paris basin were investigated for their palynofacies and calcareous nannofossils. These members display alternating limestone-marl lithotypes and represent shallow marine palaeoenvironments. The lower carbonate member is interpreted as a proximal palaeoenvironment (palaeobathymetry = 5 to 10 m), where storm and swell deposits were prevalent and the salinity was occasionally weak. The relative richness of brown phytoclasts in this part is favoured by good preservation related to restricted conditions. These conditions would explain the dominance of the nannofoss…

010506 paleontologyPalaeoenvironments010502 geochemistry & geophysics01 natural sciencesPalynofaciesSedimentary depositional environmentCoccolithPaleontologychemistry.chemical_compoundMarlCalcareous nannofossilsDominance (ecology)14. Life underwaterCoquina0105 earth and related environmental sciences[ SDU.STU.PG ] Sciences of the Universe [physics]/Earth Sciences/PaleontologyPalynologyUpper KimmeridgianMarine shallow-water dépositsGeologyParis basinPalynofacieschemistryCarbonate[SDU.STU.PG] Sciences of the Universe [physics]/Earth Sciences/Paleontology[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/PaleontologyGeology
researchProduct