Search results for "Meshless"

showing 10 items of 51 documents

A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation

2012

A meshless particle method based on an unconditionally stable time domain numerical scheme, oriented to electromagnetic transient simulations, is presented. The proposed scheme improves the smoothed particle electromagnetics method, already developed by the authors. The time stepping is approached by using the alternating directions implicit finite difference scheme, in a leapfrog way. The proposed formulation is used in order to efficiently overcome the stability relation constraint of explicit schemes. In fact, due to this constraint, large time steps cannot be used with small space steps and vice-versa. The same stability relation holds when the meshless formulation is applied together w…

Alternating directions implicit scheme · Finite difference time domain · Meshless methods · Electromagnetic transient analysisRegularized meshless methodElectromagneticsApplied MathematicsNumerical analysisMathematical analysisFinite-difference time-domain methodSolverSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaKernel (image processing)Meshfree methodsApplied mathematicsTime domainMathematicsNumerical Algorithms
researchProduct

A Generalised RBF Finite Difference Approach to Solve Nonlinear Heat Conduction Problems on Unstructured Datasets

2011

Radial Basis Functions have traditionally been used to provide a continuous interpolation of scattered data sets. However, this interpolation also allows for the reconstruction of partial derivatives throughout the solution field, which can then be used to drive the solution of a partial differential equation. Since the interpolation takes place on a scattered dataset with no local connectivity, the solution is essentially meshless. RBF-based methods have been successfully used to solve a wide variety of PDEs in this fashion. Such full-domain RBF methods are highly flexible and can exhibit spectral convergence rates Madych & Nelson (1990). However, in their traditional implementation the fu…

CollocationPartial differential equationMeshless freezing nonlinear heat conduction phase change radial basis functionLinear systemMathematical analysisFinite differenceApplied mathematicsBasis functionDomain decomposition methodsRadial basis functionInterpolationMathematics
researchProduct

A regular variational boundary model for free vibrations of magneto-electro-elastic structures

2011

In this paper a regular variational boundary element formulation for dynamic analysis of two-dimensional magneto-electro-elastic domains is presented. The method is based on a hybrid variational principle expressed in terms of generalized magneto-electro-elastic variables. The domain variables are approximated by using a superposition of weighted regular fundamental solutions of the static magneto-electro-elastic problem, whereas the boundary variables are expressed in terms of nodal values. The variational principle coupled with the proposed discretization scheme leads to the calculation of frequency-independent and symmetric generalized stiffness and mass matrices. The generalized stiffne…

DiscretizationApplied MathematicsMathematical analysisGeneral EngineeringPiezoelectricityMixed boundary conditionFree vibrationMass matrixSingular boundary methodTopologyMeshless methodMagnetoelasticityComputational MathematicsVariational principleFree boundary problemSettore ING-IND/04 - Costruzioni E Strutture AerospazialiBoundary element methodAnalysisHybrid boundaryelementmethodMathematicsStiffness matrix
researchProduct

Corrective meshless particle formulations for time domain Maxwell's equations

2007

AbstractIn this paper a meshless approximation of electromagnetic (EM) field functions and relative differential operators based on particle formulation is proposed. The idea is to obtain numerical solutions for EM problems by passing up the mesh generation usually required to compute derivatives, and by employing a set of particles arbitrarily placed in the problem domain. The meshless Smoothed Particle Hydrodynamics method has been reformulated for solving the time domain Maxwell's curl equations. The consistency of the discretized model is investigated and improvements in the approximation are obtained by modifying the numerical process. Corrective algorithms preserving meshless consiste…

Electromagnetic fieldRegularized meshless methodMathematical optimizationDiscretizationNumerical analysisApplied MathematicsMeshless particle methodMaxwell's equationSmoothed particle hydrodynamicsElectromagnetic transientsSmoothed-particle hydrodynamicssymbols.namesakeSettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaComputational MathematicsMaxwell's equationsMaxwell's equationsMesh generationsymbolsElectromagnetic transientApplied mathematicsTime domainMathematicsJournal of Computational and Applied Mathematics
researchProduct

On the use of SPH for Mechanical Engineering structural analyses: an elastic linear case

2011

Equilibrium equationSettore MAT/08 - Analisi Numericameshless methodsmothed particle hydrodynamicsSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics

2012

Eulerin virtausmallihybridized mesh/meshless methodsvirtauslaskentageneettiset algoritmitevoluutioalgoritmitposition reconstructionevoluutiolaskentahierarchical genetic algorithmsdynamic cloudsuunnitteluoptimointishape optimizationalgoritmitpeliteoriaadaptive meshless methodevolutionary algorithmsNash games
researchProduct

Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data

2022

Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables b…

Fluid Flow and Transfer Processessmoothed particle hydrodynamicsProcess Chemistry and TechnologyGeneral Engineeringcardiac resynchronization therapyelectrophysiology[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputer Science ApplicationsCRT-EPiggy19 challenge[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemPotencials evocats (Electrofisiologia)Informàticaparameter optimisation[INFO.INFO-IM]Computer Science [cs]/Medical Imagingelectrophysiology; parameter optimisation; smoothed particle hydrodynamics; meshless model; cardiac resynchronization therapy; CRT-EPiggy19 challengeGeneral Materials ScienceInstrumentationmeshless modelApplied Sciences; Volume 12; Issue 13; Pages: 6438
researchProduct

On the Consistency Restoring in SPH

2009

Function approximationSettore MAT/08 - Analisi NumericaMeshless particle methodSmoothed Particle Hydrodynamics methodConsistency Restoring
researchProduct

The Poisson problem: A comparison between two approaches based on SPH method

2012

Abstract In this paper two approaches to solve the Poisson problem are presented and compared. The computational schemes are based on Smoothed Particle Hydrodynamics method which is able to perform an integral representation by means of a smoothing kernel function by involving domain particles in the discrete formulation. The first approach is derived by means of the variational formulation of the Poisson problem, while the second one is a direct differential method. Numerical examples on different domain geometries are implemented to verify and compare the proposed approaches; the computational efficiency of the developed methods is also studied.

Integral representationApplied MathematicsMathematical analysisFunction (mathematics)Domain (software engineering)Smoothed-particle hydrodynamicsSettore MAT/08 - Analisi NumericaComputational MathematicsVariational principleApplied mathematicsPoisson problem Meshless method Smoothed Particle Hydrodynamics Consistency restoring Variational principle Differential methodSmoothing kernelPoisson problemDifferential methodMathematicsApplied Mathematics and Computation
researchProduct

Un modello numerico particellare per la magnetoencefalografia

2011

MagnetoencefalografiaSettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaPoisson Equationmeshless
researchProduct