Search results for "Mesoangioblast"
showing 10 items of 38 documents
Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vi…
2018
AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …
Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway
2017
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor …
Autophagy and apoptosis regolate survival of mesoangioblast stem cells subjected to oxidative stress
2012
Stress response in mesoangioblast stem cells
2006
Stem cells are presumed to survive various stresses, since they are recruited to areas of tissue damage and regeneration, where inflammatory cytokines and cytotoxic cells may result in severe cell injury. We explored the ability of mesoangioblasts to respond to different cell stresses such as heat, heavy metals and osmotic stress, by analyzing heat shock protein (HSP)70 synthesis as a stress indicator. We found that the A6 mesoangioblast stem cells constitutively synthesize HSP70 in a heat shock transcription factor (HSF)-independent way. However, A6 respond to heat shock and cadmium treatment by synthesizing HSP70 over the constitutive expression and this synthesis is HSF1 dependent. The e…
Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway
2016
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor …
Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells.
2009
Mouse Hsp70 (70 kDa heat shock protein) is preferentially induced by heat or stress stimuli. We previously found that Hsp70 is constitutively expressed in A6 mouse mesoangioblast stem cells, but its possible role in these cells and the control of its basal transcription remained unexplored. Here we report that in the absence of stress, Ku factor is able to bind the HSE (heat shock element) consensus sequence in vitro, and in vivo it is bound to the proximal hsp70 promoter. In addition, we show that constitutive hsp70 transcription depends on the co-operative interaction of different factors such as Sp1 (specificity protein 1) and GAGA-binding protein with Ku factor, which binds the HSE cons…
Hsp70 localizes differently from chaperone Hsc70 in mouse mesoangioblasts under physiological growth conditions
2008
Mouse A6 mesoangioblasts express Hsp70 even in the absence of cellular stress. Its expression and its intracellular localization were investigated under normal growth conditions and under hyperthermic stress. Immunofluorescence assays indicated that without any stress a fraction of Hsp70 co-localized with actin microfilaments, in the cell cortex and in the contractile ring of dividing cells, while the Hsc70 chaperone did not. Hsp70 immunoprecipitation assays confirmed that a portion of Hsp70 binds actin. Immunoblot assays showed that both proteins were present in the nucleus. After heat treatment Hsp70 and actin continued to co-localize in the leading edge of A6 cells but not on microfilame…