Search results for "Mesoscopic System"

showing 10 items of 587 documents

Decoherence in circuits of small Josephson junctions

2001

We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time $\tau_\phi$.

PhysicsJosephson effectQuantum decoherenceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingCondensed Matter - SuperconductivityFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQubitQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairQuantum computer
researchProduct

Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions

2015

We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $\alpha$-stable L\'evy distributions is considered as noise source, with varying stability index $\alpha$ and asymmetry parameter $\beta$. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is direc…

PhysicsJosephson effectStatistics and ProbabilityCondensed Matter - SuperconductivityDynamics (mechanics)large deviations in non-equilibrium systemsLarge deviations in non-equilibrium systems; mesoscopic systems (theory); metastable states; stochastic processes (theory); Statistics and Probability; Statistical and Nonlinear Physics; Statistics Probability and UncertaintyStatistical and Nonlinear Physicsstochastic processes (theory)metastable state01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasLevy noiseQuantum mechanicsLarge deviations in non-equilibrium systemmesoscopic systems (theory)Condensed Matter::Superconductivitymetastable states0103 physical scienceslarge deviations in non-equilibrium systems; mesoscopic systems (theory); metastable states; stochastic processes (theory)SineStatistics Probability and Uncertainty010306 general physicsStatistical and Nonlinear Physic
researchProduct

The generalized Kadanoff-Baym ansatz with initial correlations

2018

Within the non-equilibrium Green's function (NEGF) formalism, the Generalized Kadanoff-Baym Ansatz (GKBA) has stood out as a computationally cheap method to investigate the dynamics of interacting quantum systems driven out of equilibrium. Current implementations of the NEGF--GKBA, however, suffer from a drawback: real-time simulations require {\em noncorrelated} states as initial states. Consequently, initial correlations must be built up through an adiabatic switching of the interaction before turning on any external field, a procedure that can be numerically highly expensive. In this work, we extend the NEGF--GKBA to allow for {\em correlated} states as initial states. Our scheme makes i…

PhysicsKadanoff-Baym ansatzStrongly Correlated Electrons (cond-mat.str-el)ta114many-body theoryFOS: Physical sciencesNon-equilibrium thermodynamics02 engineering and technologyGreen's functionCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesSettore FIS/03 - Fisica della MateriaCondensed Matter - Strongly Correlated ElectronsImproved performanceFormalism (philosophy of mathematics)0103 physical sciencesExternal fieldStatistical physicskvanttifysiikka010306 general physics0210 nano-technologyAdiabatic processQuantumAnsatzPhysical Review B
researchProduct

An antidamping spin–orbit torque originating from the Berry curvature

2014

Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin-orbit torque that stems from the Berry curvature, in analogy to the origin of the …

PhysicsMagnetization dynamicsCondensed matter physicsmedia_common.quotation_subjectPoint reflectionBiomedical EngineeringBioengineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAsymmetryAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceParamagnetismMagnetizationFerromagnetismSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceBerry connection and curvatureElectrical and Electronic Engineeringmedia_commonNature Nanotechnology
researchProduct

Aharonov–Bohm/Casher effect in a Kondo ring

2000

The in#uence of a magnetic impurity or ultrasmall quantum dot on the spin and charge persistent currents of a mesoscopic ring is investigated. The system consists of electrons in a one-dimensional ring threaded by spin-dependent Aharonov}Bohm/Casher #uxes, and coupled via an antiferromagnetic exchange interaction to a localized electron. The problem is mapped onto a Kondo model for the even-parity channel plus free electrons in the odd-parity channel. The twisted boundary conditions representing the #uxes couple states of opposite parity unless the twist angles / a satisfy / a "f a p, where f a are integers, with spin index a"C, B. For these special values of / a , the model is solvable by …

PhysicsMesoscopic physicsCondensed matter physicsExchange interactionPersistent currentParity (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBethe ansatzQuantum mechanicsCondensed Matter::Strongly Correlated ElectronsKondo effectElectrical and Electronic EngineeringKondo modelMagnetic impurityPhysica B: Condensed Matter
researchProduct

Persistent spin and charge currents and magnification effects in open ring conductors subject toRashba coupling

2007

We analyze the effect of Rashba spin-orbit coupling and of a local tunnel barrier on the persistent spin and charge currents in a one-dimensional conducting Aharonov-Bohm (AB) ring symmetrically coupled to two leads. First, as an important consequence of the spin-splitting, it is found that a persistent spin current can be induced which is not simply proportional to the charge current. Second, a magnification effect of the persistent spin current is shown when one tunes the Fermi energy near the Fano-type antiresonances of the total transmission coefficient governed by the tunnel barrier strength. As an unambiguous signature of spin-orbit coupling we also show the possibility to produce a p…

PhysicsMesoscopic physicsCondensed matter physicsSpintronicsSpin polarizationCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesCharge (physics)Fermi energyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsBallistic conductionMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectCondensed Matter::Strongly Correlated ElectronsSpin-½
researchProduct

S-matrix formulation of mesoscopic systems and evanescent modes.

2009

The Landauer-Butikker formalism is an important formalism to study mesoscopic systems. Its validity for linear transport is well established theoretically as well as experimentally. Akkermans et al [Phys. Rev. Lett. {\bf 66}, 76 (1991)] had shown that the formalism can be extended to study thermodynamic properties like persistent currents. It was earlier verified for simple one dimensional systems. We study this formula very carefully and conclude that it requires reinterpretation in quasi one dimension. This is essentially because of the presence of evanescent modes in quasi one dimension.

PhysicsMesoscopic physicsFormalism (philosophy of mathematics)Evanescent waveCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesGeneral Materials ScienceCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCalculation methodsS-matrixJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets

2020

Identification of a previously overlooked spontaneous Hall effect mechanism creates opportunities in low-dissipation spintronics.

PhysicsMultidisciplinaryCondensed matter physicseducationMaterials ScienceSciAdv r-articles02 engineering and technologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesSymmetry (physics)CrystalMagnetizationFerromagnetismT-symmetryHall effect0103 physical sciencesAntiferromagnetismSymmetry breaking010306 general physics0210 nano-technologypsychological phenomena and processesResearch ArticlesResearch ArticleScience Advances
researchProduct

Topological Defects in Nanostructures—Chiral Domain Walls and Skyrmions

2016

In this chapter, spin structures with particular topologies in confined geometries are presented. Domain walls in nanowires exhibit a spin structure that depends on the material and geometry while in discs Skyrmions can be stabilized by different competing interactions. The topologies of these spin structures can be characterized by a Skyrmion or Winding number that governs the dynamics and stability.

PhysicsNanostructureCondensed matter physicsSkyrmionWinding numberNanowire02 engineering and technologySpin structureCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesTopological defectDomain wall (magnetism)0103 physical sciences010306 general physics0210 nano-technologyComputer Science::DatabasesSpin-½
researchProduct

Adiabatic charge pumping in carbon nanotube quantum dots.

2008

We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that, at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blockade peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency, and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.

PhysicsNanotubeCondensed matter physicsSurface acoustic waveGeneral Physics and AstronomyCoulomb blockadeCarbon nanotubeCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionCarbon nanotube quantum dotQuantum dotlawElectric fieldAdiabatic processPhysical review letters
researchProduct