Search results for "Mesoscopic System"

showing 10 items of 587 documents

Simultaneous observation of light localization and confinement in near-field optics

2001

We report on the observation, in direct space, of both light localization and confinement effects near lithographically designed structures. The sample is observed in the optical near-field zone with a Photon Scanning Tunneling Microscope (PSTM). Several patterns composed of a few periods of TiO2 dots, arranged as a hexagonal lattice, have been investigated. When the central dot of the pattern is removed, a phenomenon of light localization above the vacancy can be observed in the PSTM image. The occurrence of this phenomenon can be related to the variation of the electromagnetic local density of state.

PhysicsPhotonbusiness.industryNear-field opticsGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSpace (mathematics)law.inventionOpticslawVacancy defectDensity of statesNear-field scanning optical microscopeHexagonal latticeScanning tunneling microscopebusinessEurophysics Letters (EPL)
researchProduct

Robust single-parameter quantized charge pumping

2008

This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.

PhysicsPhysics and Astronomy (miscellaneous)Condensed Matter - Mesoscale and Nanoscale PhysicsRF power amplifierNanowireFOS: Physical sciencesTopologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSignalFeature (computer vision)Robustness (computer science)ModulationMesoscale and Nanoscale Physics (cond-mat.mes-hall)ScalabilityCurrent (fluid)
researchProduct

One and two dimensional tunnel junction arrays in weak Coulomb blockade regime-absolute accuracy in thermometry

1999

We have investigated one and two dimensional (1D and 2D) arrays of tunnel junctions in partial Coulomb blockade regime. The absolute accuracy of the Coulomb blockade thermometer is influenced by the external impedance of the array, which is not the same in the different topologies of 1D and 2D arrays. We demonstrate, both by experiment and by theoretical calculations in simple geometries, that the 1D structures are better in this respect. Yet in both 1D and 2D, the influence of the environment can be made arbitrarily small by making the array sufficiently large.

PhysicsPhysics and Astronomy (miscellaneous)Condensed Matter - Mesoscale and Nanoscale PhysicsSimple (abstract algebra)Tunnel junctionThermometerAbsolute accuracyMesoscale and Nanoscale Physics (cond-mat.mes-hall)Coulomb blockadeFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectrical impedanceComputational physics
researchProduct

Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice

2015

In a superlattice placed in crossed electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the miniband and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.

PhysicsPhysics and Astronomy (miscellaneous)Condensed matter physicsSolid-state physicsCondensed Matter - Mesoscale and Nanoscale Physicsta114Terahertz radiationAmplifierSuperlatticesemiconductor superlatticeFOS: Physical sciencesfood and beverages02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesElectromagnetic radiation3. Good healthMagnetic fieldEffective mass (solid-state physics)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyJETP Letters
researchProduct

Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires

2013

The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.

PhysicsPhysics and Astronomy (miscellaneous)business.industryDotCondensed Matter::OtherExcitonPhysics::OpticsPurcell effectContinuous-Wave OperationCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductor laser theoryNanocavityOptical pumpingOptoelectronicsSpontaneous emissionStimulated emissionbusinessSpontaneous EmissionLasing thresholdRoom-TemperatureMicrodisk LasersPhotonic crystal
researchProduct

Current-induced H-shaped-skyrmion creation and their dynamics in the helical phase

2021

Abstract Inevitable for the basic principles of skyrmion racetrack-like applications is not only their confined motion along one-dimensional channels but also their controlled creation and annihilation. Helical magnets have been suggested to naturally confine the motion of skyrmions along the tracks formed by the helices, which also allow for high-speed skyrmion motion. We propose a protocol to create topological magnetic structures in a helical background. We furthermore analyse the stability and current-driven motion of the skyrmions in a helical background with in-plane uniaxial anisotropy fixing the orientation of the helices.

PhysicsQuantitative Biology::BiomoleculesAnnihilationCondensed Matter - Mesoscale and Nanoscale PhysicsAcoustics and UltrasonicsCondensed matter physicsSkyrmionDynamics (mechanics)Phase (waves)Motion (geometry)FOS: Physical sciencesPhysik (inkl. Astronomie)Condensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOrientation (geometry)MagnetMesoscale and Nanoscale Physics (cond-mat.mes-hall)Anisotropy
researchProduct

Magnetic field enhanced robustness of quantized current plateaus in single and double quantum dot non-adiabatic single charge pumps

2010

We compare the robustness of the quantized current plateaus of semiconductor non-adiabatic quantized charge pumps consisting of a single quantum dot (SQD) and two QDs connected in series (DQD). For the SQD application of a perpendicular magnetic field leads to an enhanced robustness of the first current plateau I = ef, with f the pumping frequency and e the elementary charge. In contrast for the DQD a comparably enhanced robustness of the plateau I = 2ef is found. These findings might allow generation of higher currents without compromising quantization accuracy by optimizing the device geometry.

PhysicsQuantization (physics)SemiconductorCondensed matter physicsQuantum dotbusiness.industryLogic gateDouble quantumCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElementary chargebusinessAdiabatic processMagnetic fieldCPEM 2010
researchProduct

Entanglement controlled single- electron transmittivity

2006

We consider a system consisting of single electrons moving along a 1D wire in the presence of two magnetic impurities. Such system shows strong analogies with a Fabry - Perot interferometer in which the impurities play the role of two mirrors with a quantum degree of freedom: the spin. We have analysed the electron transmittivity of the wire in the presence of entanglement between the impurity spins. The main result of our analysis is that, for suitable values of the electron momentum, there are two maximally entangled state of the impurity spins the first of which makes the wire transparent whatever the electron spin state while the other strongly inhibits the electron transmittivity. Such…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpinsCondensed matter physicsFOS: Physical sciencesGeneral Physics and AstronomyObservableQuantum entanglementElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences010305 fluids & plasmasdecayMomentumImpurityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCondensed Matter::Strongly Correlated ElectronseffectsQuantum Physics (quant-ph)010306 general physicsSpin (physics)survival probabilityQuantum
researchProduct

Dzyaloshinskii-Moriya and dipole-dipole interactions affect coupling-based Landau-Majorana-Stückelberg-Zener transitions

2020

It has been theoretically demonstrated that two spins (qubits or qutrits), coupled by exchange interaction only, undergo a coupling-based joint Landau-Majorana-St\"uckelberg-Zener (LMSZ) transition when a linear ramp acts upon one of the two spins. Such a transition, under appropriate conditions on the parameters, drives the two-spin system toward a maximally entangled state. In this paper, effects on the quantum dynamics of the two qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated qualitatively and quantitatively. The enriched Hamiltonian model of the two spins, shares with the previous microscopic one the same C2-symmetry which onc…

PhysicsQuantum PhysicsCondensed matter physicsSpin dynamicsQuantum entanglementCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesPhysics::History of Physics010305 fluids & plasmasCoupling (physics)MAJORANADipole0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic PhysicsZener diode010306 general physicsDipolar interaction Dzyaloshinskii-Moriya interaction Entanglement production Landau-Zener effect Quantum entanglement Spin dynamicsPhysical Review Research
researchProduct

Resonant effects in a SQUID qubit subjected to nonadiabatic changes

2013

By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum…

PhysicsQuantum PhysicsFlux qubitCharge qubitCondensed Matter - SuperconductivityTime evolutionSuperconducting devices; SQUID qubit; Landau-Zener transitions; resonant tunneling.Quantum simulatorFOS: Physical sciencesSQUID qubitresonant tunneling.Condensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsPhase qubitSuperconductivity (cond-mat.supr-con)Quantum mechanicsQubitqubit; supeconductvity; squidQuantum Physics (quant-ph)Landau-Zener transitionQuantumSuperconducting deviceQuantum computer
researchProduct