Search results for "Mesoscopic physics"
showing 10 items of 122 documents
Simulating a quantum commensurate-incommensurate phase transition using two Raman-coupled one-dimensional condensates
2020
We study a transition between a homogeneous and an inhomogeneous phase in a system of one-dimensional, Raman tunnel-coupled Bose gases. The homogeneous phase shows a flat density and phase profile, whereas the inhomogeneous ground state is characterized by periodic density ripples, and a soliton staircase in the phase difference. We show that under experimentally viable conditions the transition can be tuned by the wavevector difference $Q$ of the Raman beams and can be described by the Pokrovsky-Talapov model for the relative phase between the two condensates. Local imaging available in atom chip experiments allows to observe the soliton lattice directly, while modulation spectroscopy can …
Light polarization measurements in tests of macrorealism
2018
According to the world view of macrorealism, the properties of a given system exist prior to and independent of measurement, which is incompatible with quantum mechanics. Leggett and Garg put forward a practical criterion capable of identifying violations of macrorealism, and so far experiments performed on microscopic and mesoscopic systems have always ruled out in favor of quantum mechanics. However, a macrorealist can always assign the cause of such violations to the perturbation that measurements effect on such small systems, and hence a definitive test would require using non-invasive measurements, preferably on macroscopic objects, where such measurements seem more plausible. However,…
Nonlocal random motions: The trapping problem
2014
L\'evy stable (jump-type) processes are examples of intrinsically nonlocal random motions. This property becomes a serious obstacle if one attempts to model conditions under which a particular L\'evy process may be subject to physically implementable manipulations, whose ultimate goal is to confine the random motion in a spatially finite, possibly mesoscopic trap. We analyze thisissue for an exemplary case of the Cauchy process in a finiteinterval. Qualitatively, our observations extend to general jump-type processes that are driven by non-gaussian noises, classified by the integral part of the L\'evy-Khintchine formula.For clarity of arguments we discuss, as a reference model, the classic …
Two-dimensional spectroscopy for the study of ion Coulomb crystals
2015
Ion Coulomb crystals are currently establishing themselves as a highly controllable test-bed for mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of these crystals however remains an experimental challenge. In this work, we show how to extend the concepts of multi-dimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate the advantages of our proposal showing how two-dimensional spectroscopy can be used to detec…
Theoretical analysis of a recent experiment on mesoscopic state superpositions in cavity QED
2005
Quite recently quantum features exhibited by a mesoscopic field interacting with a single Rydberg atom in a microwave cavity has been observed [A. Auffeves et al., Phys. Rev. Lett. 91, 230405 (2003)]. In this paper we theoretically analyze all the phases of this articulated experiment considering from the very beginning cavity losses. Fully applying the theory of quantum open systems, our modelization succeeds in predicting fine aspects of the measured quantity, reaching qualitative and quantitative good agreement with the experimental results. This fact validates our theoretical approach based on the fundamental atom-cavity interaction model and simple mathematical structure of dissipative…
Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation
2016
When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.
Spinodal decomposition of polymer solutions: A parallelized molecular dynamics simulation
2008
In simulations of phase separation kinetics, large length and time scales are involved due to the mesoscopic size of the polymer coils, and the structure formation on still larger scales of length and time. We apply a coarse-grained model of hexadecane dissolved in supercritical carbon dioxide, for which in previous work the equilibrium phase behavior has been established by Monte Carlo methods. Using parallelized simulations on a multiprocessor supercomputer, large scale molecular dynamics simulations of phase separation following pressure jumps are presented for systems containing $N=435\phantom{\rule{0.2em}{0ex}}136$ coarse-grained particles, which correspond to several millions of atoms…
Coherent potential approximation for diffusion and wave propagation in topologically disordered systems
2013
Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent-potential approximation (CPA) suited for describing ($i$) the diffusive (hopping) motion of classical particles in a random environment and ($ii$) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown …
Effect of reactant spatial distribution in theA+B→0reaction kinetics in one dimension with Coulomb interaction
1996
The effect of nonequilibrium charge screening in the kinetics of the one-dimensional, diffusion-controlled $A+B\ensuremath{\rightarrow}0$ reaction between charged reactants in solids and liquids is studied. The incorrectness of the static, Debye-H\"uckel theory is shown. Our microscopic formalism is based on the Kirkwood superposition approximation for three-particle densities and the self-consistent treatment of the electrostatic interactions defined by the nonuniform spatial distribution of similar and dissimilar reactants treated in terms of the relevant joint correlation functions. Special attention is paid to the pattern formation due to a reaction-induced non-Poissonian fluctuation sp…
Mesoscopic Simulation Methods for Studying Flow and Transport in Electric Fields in Micro- and Nanochannels
2012
In the past decades, several mesoscale simulation techniques have emerged as tools to study hydrodynamic flow phenomena on scales in the range of nanoto micrometers. Examples are Dissipative Particle Dynamics (DPD), Multiparticle Collision Dynamics (MPCD), or Lattice Boltzmann (LB) methods. These methods allow one to access time and length scales which are not yet within reach of atomistic Molecular Dynamics (MD) simulations, often at relatively moderate computational expense. They can be coupled with particle-based (e.g., molecular dynamics) simulation methods for thermally fluctuating nanoscale objects, such as colloids or large molecules. This makes them particularly attractive for the a…