Search results for "Mesoscopic"
showing 10 items of 709 documents
A 3D mesoscopic approach for discrete dislocation dynamics
2001
In recent years a noticeable renewed interest in modeling dislocations at the mesoscopic scale has been developed leading to significant advances in the field. This interest has arisen from a desire to link the atomistic and macroscopic length scales. In this context, we have recently developed a 3D-discrete dislocation dynamics model (DDD) based on a nodal discretization of the dislocations. We present here the basis of our DDD model and two examples of studies with single and multiple slip planes.
Dynamical and statistical properties of high-temperature self-propagating fronts: An experimental study
2009
International audience; We present a detailed experimental study of high-temperature self-propagating fronts using image processing techniques. The intrinsic features of the wave propagation are investigated as a function of the combustion temperature TC for a model system made of titanium and silicon powders. Different front behavior is realized by changing the molar ratio x of the mixture Ti+xSi. Outside the range x=[0.3,1.5], no thermal front is propagating while inside, three regimes are observed: steady-state combustion which is characterized by a flat front propagating at constant velocity and two unsteady regimes. The combustion temperature (or the corresponding ratio x) is thus play…
Solidification microstructure during selective laser melting of Ni based superalloy: experiment and mesoscopic modelling
2019
International audience; A set of single track laser melting experiments was performed in a selective laser melting (SLM). The tracks were done on an Inconel 718 plate with various laser scan velocities at a constant laser power of 150 W. The geometries of the molten pool (MP), as well as the solidified dendrite structures, i.e., primary and secondary dendrite arm spacing (PDAS and SDAS), in the cross sections of the molten path were characterized to evaluate the effect of the laser scan velocity during SLM. Moreover, the local solidification thermal conditions (cooling rate R*, tip growth velocity V* and temperature gradient G*) at the MP bottom were deduced from the SDAS and the geometries…
Effect of additives on the structural organization of asphaltene aggregates in bitumen
2019
Abstract Bitumens are composite materials whose complex organization hinders the rational understanding of their relationships between composition, structure and performances. So, research attempting to shed more light in this field is required. In this work Wide Angle X ray Scattering (WAXS) has been used to explore the influence of six opportunely chosen additives on the bitumen structure with the aim to ultimately correlate the findings with the bitumen performances. Diagnostic fingerprints have been observed in the WAXS profile: asphaltenes form stuck of about 18 A and constituted by about 6 asphaltene units on average. Such stucks are, in turn, organized at higher levels of complexity …
Wait-and-switch relaxation model: Relationship between nonexponential relaxation patterns and random local properties of a complex system
2006
The wait-and-switch stochastic model of relaxation is presented. Using the ``random-variable'' formalism of limit theorems of probability theory we explain the universality of the short- and long-time fractional-power laws in relaxation responses of complex systems. We show that the time evolution of the nonequilibrium state of a macroscopic system depends on two stochastic mechanisms: one, which determines the local statistical properties of the relaxing entities, and the other one, which determines the number (random or deterministic) of the microscopic and mesoscopic relaxation contributions. Within the proposed framework we derive the Havriliak-Negami and Kohlrausch-Williams-Watts funct…
Hierarchical Structuring in Block Copolymer Nanocomposites through Two Phase-Separation Processes Operating on Different Time Scales
2013
Tailoring the size and surface chemistry of nanoparticles allows one to control their position in a block copolymer, but this is usually limited to one-dimensional distribution across domains. Here, the hierarchical assembly of poly(ethylene oxide)-stabilized gold nanoparticles (Au-PEO) into hexagonally packed clusters inside mesostructured ultrathin films of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is described. A close examination of the structural evolution at different nanoparticle filling fractions and PEO ligand molecular weights suggests that the mechanism leading to this structure-within-structure is the existence of two phase separation processes operating on differe…
Micro- and mesoscopic process interactions in protein coagulation
2000
It has recently been recognized that pathological protein coagulation is responsible for lethal pathologies as diverse as amyloidosis, Alzheimer and TSE. Understanding the coagulation mechanisms is therefore stirring great interest. In previous studies we have shown that on profoundly different systems coagulation is the result of a strong interaction between two processes on different length scales (mesoscopic and microscopic). Here we report experiments on bovine serum albumin (BSA) showing that the overall mechanism is the result of at least 3 distinct and strongly intertwined processes, on both length scales: molecular conformational changes, solution demixing and intermolecular crossli…
A mesoscopic approach to radiation-induced defect aggregation in alkali halides stimulated by the elastic interaction of mobile Frenkel defects
1994
The radiation-induced aggregation of Frenkel defects in alkali halides is studied in terms of a mesoscopic approach. The asymmetry in elastic interactions between mobile interstitials (I–I) and bet...
Joint reality and Bell inequalities for consecutive measurements
2006
Some new Bell inequalities for consecutive measurements are deduced under joint realism assumption, using some perfect correlation property. No locality condition is needed. When the measured system is a macroscopic system, joint realism assumption substitutes the non-invasive hypothesis advantageously, provided that the system satisfies the perfect correlation property. The new inequalities are violated quantically. This violation can be expected to be more severe than in the case of precedent temporal Bell inequalities. Some microscopic and mesoscopic situations, in which the new inequalities could be tested, are roughly considered.
Emerging Evidences of Mesoscopic-Scale Complexity in Neat Ionic Liquids and Their Mixtures
2017
Ionic liquids (ILs) represent a blooming class of continuously developing advanced materials, with the aiming of a green chemical industry. Their appealing physical and chemical properties are largely influenced by their micro- and mesoscopic structure that is known to possess a high degree of hierarchical organization. High-impact application fields are largely affected by the complex morphology of neat ionic liquids and their mixtures. This Perspective highlights new arising research directions that point to an enhanced level of structural complexity in several IL-based systems, including mixtures. The latter represent a change in paradigm in the approach to formulate new, task-specific I…