Search results for "Metal-blending"

showing 1 items of 1 documents

Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior

2018

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it incre…

LangmuirEnvironmental EngineeringP06 - Sources d'énergie renouvelableHealth Toxicology and Mutagenesishttp://aims.fao.org/aos/agrovoc/c_290360208 environmental biotechnology02 engineering and technology010501 environmental sciences01 natural sciencesRedoxchemistry.chemical_compoundAdsorptionBiocharPhysico-chemicalBiomasseZeta potentialEnvironmental ChemistrySurface chargeBiomassOxydation0105 earth and related environmental scienceshttp://aims.fao.org/aos/agrovoc/c_26874Designer biocharMetalPublic Health Environmental and Occupational HealthArsenateGeneral MedicineGeneral ChemistryOxyanionPore size distributionMétalPollutionMetal-blendingU50 - Sciences physiques et chimie020801 environmental engineeringhttp://aims.fao.org/aos/agrovoc/c_926chemistryChemical engineeringMetalsCharcoalCharbonPyrolyseAdsorptionhttp://aims.fao.org/aos/agrovoc/c_5472Pyrolysishttp://aims.fao.org/aos/agrovoc/c_1693
researchProduct