Search results for "Metamaterial"
showing 10 items of 89 documents
Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator
2016
International audience; We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degre…
Continuum constitutive laws to describe acoustic attenuation in glasses
2020
International audience; Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made…
Isotropic Chiral Acoustic Phonons in 3D Quasicrystalline Metamaterials.
2020
International audience; The elastic properties of three-dimensional (3D) crystalline mechanical metamaterials, unlike those of amorphous structures, are generally strongly anisotropic—even in the long-wavelength limit and for highly symmetric crystals. Aiming at isotropic linear elastic wave propagation, we therefore study 3D periodic approximants of 3D icosahedral quasicrystalline mechanical metamaterials consisting of uniaxial chiral metarods. Considering the increasing order of the approximants, we approach nearly isotropic effective speeds of sound and isotropic acoustical activity. The latter is directly connected to circularly polarized 3D metamaterial chiral acoustic phonons—for all …
Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging
2021
International audience; Metasurfaces are planar metamaterials with a flat surface and a subwavelength thickness that are able to shape arbitrary wave fronts such as focusing or imaging. There is a broad interest in the literature about subwavelength focusing and imaging based on bulk metamaterials while the utilization of metasurfaces for elastic waves has rarely been reported. Here, we present a type of elastic metasurface consisting of a line of gradient resonant pillars for robust deep subwavelength focusing and imaging of elastic waves in a plate. Numerical approaches supported by analytic Huygens-Fresnel demonstrations show that the subwavelength full width at half maximum (FWHM) behav…
Dyakonov surface waves in lossy metamaterials
2015
We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpass the working wavelength by nearly two orders of magnitude. This research was funded by the Spanish Ministry of Economy and Competitiveness under the Project TEC2013-50416-E…
Designed surface modes propagating along hyperbolic metamaterials
2013
We report on surface-wave propagation (SWP) that occurs in semi-infinite hyperbolic metamaterials whose optical axis is set in the interface plane. In practice it is implemented by a multi-layered metal-dielectric nanostructure that is cut normally to the layers. Our theoretical analysis shows that various conditions can be designed enabling distinct regimes of SWP. We concluded that hybridization of SWP polarization leads to tighter confinement near the interface as compared with conventional surface plasmon polaritons. By using the finite-element method (FEM), we demonstrate that the fields are enhanced on the walls of metallic films, and thus minimizing significantly its presence inside …
Dyakonov-like surface waves in the THz regime
2016
Abstract Here we examine Dyakonov-like surface waves (DSWs) in the THz regime traveling along the plane interface between a non-conducting isotropic medium and a low-loss graphene-based uniaxial metamaterial with the optic axis (OA) oriented along with the interface. New insights concerning the propagation characteristics of DSWs are given by analyzing the dispersion relation in such configuration, that is evaluated using the effective medium theory. The range of angles with respect to the OA which is determined for the in-plane wave vector can be conveniently tuned with extremely flexibility in opposition with DSWs excited in natural anisotropic media. The properties discussed here are of …
A broadband multifocal metalens in the terahertz frequency range
2016
Abstract Metasurfaces, the 2D form of metamaterials with their ability in phase, amplitude and polarization manipulation are widely used in designing optical devices. Efforts to find proper photonic components in the terahertz (THz) range of frequency lead us to adopt metasurfaces as their constituent elements. Here, we conceived a broadband THz lens with an adjustable number and arrangement of focal points. To have a full control over the lens functionality, we used a metasurface with the capability of simultaneously modulating the amplitude and phase of the incident wave. C-shaped ring resonators (CSRRs) with different geometry and orientation capable of simultaneously manipulating phase …
Phononic crystals: Harnessing the propagation of sound, elastic waves, and phonons
2016
Comptes Rendus Physique - In Press.Proof corrected by the author Available online since jeudi 3 mars 2016
Ultrasonic characterisation of poroux materials
2017
International audience; Acoustic models of the acoustics of porous and perforated media involve a set of physical parameters. Some of the parameters, the tortusity, the viscous and thermal characteristic lengths are defined for a perfect incompressible and inviscid fluid saturating the porous medium. It is shown that ultrasonic propagation in air-saturated materials can be used to determine these parameters. A basic method involving air-coupled ultrasonic transducers is presented. Variants of this method and a practical implementation of one of these is proposed.