Search results for "Methanobacterium"
showing 4 items of 4 documents
Community Structure of Methanogens in the Hydrolytic Reactors of Two-Stage Anaerobic Biogas Reactor
2008
Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production
2010
Six batch leach bed (LB) reactors, installed in parallel and connected to a common upflow anaerobic sludge blanket reactor, were fed with grass silage and operated at 35 (+/-1) degrees C. The development and distribution of microorganisms, which firmly and loosely attached to solid materials, and presented in the leachate in the LB reactors, were investigated by 16S rRNA gene-based terminal restriction fragment length polymorphism and clone library analyses. The phylotypes and their relative abundance changed in the respective bacterial community throughout the 49-day run and showed differences between the communities. Large numbers of phylotypes were detected from day 10 onwards. On day 17…
Complete genome sequence of the hydrogenotrophic Archaeon Methanobacterium sp Mb1 isolated from a production-scale biogas plant
2013
Methanobacterium sp. Mb1, a hydrogenotrophic methanogenic Archaeon, was isolated from a rural biogas plant producing methane-rich biogas from maize silage and cattle manure in Germany. Here we report the complete genome sequence of the novel methanogenic isolate Methanobacterium sp. Mb1 harboring a 2,029,766 bp circular chromosome featuring a GC content of 39.74%. The genome encodes two rRNA operons, 41 tRNA genes and 2021 coding sequences and represents the smallest genome currently known within the genus Methanobacterium. (C) 2013 Elsevier B.V. All rights reserved.
Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).
2014
The neotype strain Methanobacterium formicicum MFT (DSM1535), a hydrogenotrophic methanogenic Archaeon, was isolated from a domestic sewage sludge digestor in Urbana (IL, USA). Here, the complete genome sequence of the methanogen is reported. The genome is 2,478,074 bp in size, featuring a GC content of 41.23%. M. formicicum MFT encodes several genes predicted to be involved in adaptation to abiotic stress such as high osmolarity. The strain MFT is of biotechnological importance since M. formicicum strains are often found in production-scale biogas plants and it is suggested as a starter culture for the anaerobic biomethanation process. (C) 2014 Elsevier B.V. All rights reserved.