Search results for "Methanoculleus"
showing 4 items of 4 documents
Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants
2014
The final step of the biogas production process, the methanogenesis, is frequently dominated by members of the genus Methanoculleus. In particular, the species Methanoculleus bourgensis was identified to play a role in different biogas reactor systems. The genome of the type strain M. bourgensis MS2(T), originally isolated from a sewage sludge digestor, was completely sequenced to analyze putative adaptive genome features conferring competitiveness within biogas reactor environments to the strain. Sequencing and assembly of the M. bourgensis MS2(T) genome yielded a chromosome with a size of 2,789,773 bp. Comparative analysis of M. bourgensis MS2(T) and Methanoculleus marisnigri JR1 revealed…
Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany
2015
Background Only a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case. Results A complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacte…
Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion
2020
International audience; This review aims at providing a unified methodology for free ammonia nitrogen (FAN) calculation in anaerobic digesters, also identifying the factors causing the huge disparity in FAN inhibitory limits. Results show that assuming ideal equilibria overestimates the FAN concentrations up to 37% when compared to MINTEQA2 Equilibrium Speciation Model, used as reference. The Davies equation led to major improvements. Measuring the concentrations of NH 4 þ , Na þ and K þ was enough to achieve major corrections. The best compromise between complexity and accuracy was achieved with a novel modified Davies equation, with systematic differences in FAN concentrations of 2% when …
Analysis of propionate‐degrading consortia from agricultural biogas plants
2016
Abstract In order to investigate the propionate‐degrading community of agricultural biogas plants, four propionate‐degrading consortia (Ap1a, N12, G12, and Wp2a) were established from different biogas plants which were fed with renewable resources. The consortia were cultivated in a batch for a period of 2–4 years and then analyzed in an 8‐week batch experiment for microbial succession during propionate degradation. Community shifts showed considerable propagation of Syntrophobacter sulfatireducens, Cryptanaerobacter sp./Pelotomaculum sp., and “Candidatus Cloacamonas sp.” in the course of decreasing propionate concentration. Methanogenic species belonged mainly to the genera Methanosarcina,…