Search results for "Methanosaeta"

showing 10 items of 16 documents

Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents.

2018

Abstract The effect of chitosan on the development of granular sludge in upflow anaerobic sludge blanket reactors (UASB) when treating wastewater polluted with the organic solvents ethanol, ethyl acetate, and 1-ethoxy-2-propanol was evaluated. Three UASB reactors were operated for 219 days at ambient temperature with an organic loading rate (OLR) of between 0.3 kg COD m −3 d −1 and 20 kg COD m −3 d −1 . One reactor was operated without the addition of chitosan, while the other two were operated with the addition of chitosan doses of 2.4 mg gVSS −1 two times. The three reactors were all able to treat the OLR tested with COD removal efficiencies greater than 90%. However, the time required to…

0106 biological sciencesAigua ContaminacióEnvironmental EngineeringPolymersEthyl acetate010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidMethanosaetaMethanomicrobialesChitosanchemistry.chemical_compoundGranulationExtracellular polymeric substanceBioreactors010608 biotechnologyAnaerobiosisParticle SizeWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringBiological Oxygen Demand AnalysisChitosanbiologySewageEcological ModelingMicrobiotaGranule (cell biology)biology.organism_classificationPulp and paper industryPollutionMethanogenchemistryWastewaterSolventsAigua MicrobiologiaGeobacterWater Pollutants ChemicalWater research
researchProduct

Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial divers…

2020

Abstract Anaerobic co-digestion of primary sludge and raw microalgae (Scenedesmus and Chlorella) was performed in a lab-scale semi-continuous anaerobic membrane bioreactor to assess the biological performance and identify the microbial community involved in the co-digestion process. The reactor was operated at 35 °C for 440 days, working at a solids retention time of 100 days. The system achieved 73% biodegradability and showed high stability in terms of pH and volatile fatty acids. An enriched microbial community was observed. Of the several phyla, Chloroflexi and Proteobacteria were the most abundant. Cellulose-degraders phyla (Bacteroidetes, Chloroflexi and Thermotogae) were detected. Sy…

0106 biological sciencesEnvironmental EngineeringBioengineeringChlorella010501 environmental sciences01 natural sciencesMethanosaetaBioreactors010608 biotechnologyMicroalgaeAnaerobiosisWaste Management and DisposalEffluent0105 earth and related environmental sciencesSewagebiologyRenewable Energy Sustainability and the EnvironmentChemistryGeneral MedicineBiodegradationbiology.organism_classificationPulp and paper industryChloroflexi (class)Microbial population biologyDigestateProteobacteriaMethaneMesophileBioresource Technology
researchProduct

Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic m…

2019

[EN] Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and …

0106 biological sciencesRumenEnvironmental EngineeringMicroorganismBioengineering010501 environmental sciencesWaste Disposal Fluid01 natural sciencesMethanosaetaBioreactorsBiogasMicrobial ecologyBioenergyRNA Ribosomal 16S010608 biotechnologyMicroalgaeBioreactorAnimalsAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologyAnaerobic membrane bioreactor (AnMBR)Renewable Energy Sustainability and the EnvironmentChemistryMicrobiotaGeneral MedicineBiogasMicroalgaeBiodegradationbiology.organism_classificationPulp and paper industryMicrobial population biologyBiofuels16S rRNA geneMethaneBioresource Technology
researchProduct

Analysis of propionate‐degrading consortia from agricultural biogas plants

2016

Abstract In order to investigate the propionate‐degrading community of agricultural biogas plants, four propionate‐degrading consortia (Ap1a, N12, G12, and Wp2a) were established from different biogas plants which were fed with renewable resources. The consortia were cultivated in a batch for a period of 2–4 years and then analyzed in an 8‐week batch experiment for microbial succession during propionate degradation. Community shifts showed considerable propagation of Syntrophobacter sulfatireducens, Cryptanaerobacter sp./Pelotomaculum sp., and “Candidatus Cloacamonas sp.” in the course of decreasing propionate concentration. Methanogenic species belonged mainly to the genera Methanosarcina,…

0301 basic medicineDeltaproteobacteriafood.ingredient030106 microbiologyFirmicutesBiologyAcetatesMicrobiologyMethanosaeta03 medical and health sciencesfoodSyntrophyBiogasRNA Ribosomal 16SbiogaspropionatemethanogensOriginal Researchdegradationchemistry.chemical_classificationhomoacetogensWaste managementSewageMicrobiotaPelotomaculumMethanosarcinaMoorellabiology.organism_classificationQR1-502030104 developmental biologyMethanoculleusBiodegradation EnvironmentalchemistryEnvironmental chemistrysyntrophyMethanosarcinaPropionatecommunityPropionatesMethaneOxidation-ReductionHydrogenMicrobiologyOpen
researchProduct

Control of VOCs from printing press air emissions by anaerobic bioscrubber: Performance and microbial community of an on-site pilot unit

2017

Abstract A novel process consisted of an anaerobic bioscrubber was studied at the field scale for the removal of volatile organic compounds (VOCs) emitted from a printing press facility. The pilot unit worked under high fluctuating waste gas emissions containing ethanol, ethyl acetate, and 1-ethoxy-2-propanol as main pollutants, with airflows ranging between 184 and 1253 m 3  h −1 and an average concentration of 1126 ± 470 mg-C Nm −3 . Three scrubber configurations (cross-flow and vertical-flow packings and spray tower) were tested, and cross-flow packing was found to be the best one. For this packing, daily average values of VOC removal efficiency ranged between 83% and 93% for liquid to a…

0301 basic medicineEnvironmental Engineering030106 microbiologyEthyl acetateBiomassScrubber010501 environmental sciencesManagement Monitoring Policy and LawWaste Disposal Fluid01 natural sciencesMethanosaetaMethane03 medical and health scienceschemistry.chemical_compoundBioreactorsCompostos orgànicsBiogasAnaerobiosisWaste Management and Disposal0105 earth and related environmental sciencesVolatile Organic CompoundsChromatographySewagebiologyGeneral MedicinePulp and paper industrybiology.organism_classificationAire AnàlisichemistryPrintingSewage treatmentMethaneAire ContaminacióGeobacterJournal of Environmental Management
researchProduct

Influence of food waste addition over microbial communities in an Anaerobic Membrane Bioreactor plant treating urban wastewater

2018

[EN] Notorious changes in microbial communities were observed during and after the joint treatment of wastewater with Food Waste (FW) in an Anaerobic Membrane Bioreactor (AnMBR) plant. The microbial population was analysed by high-throughput sequencing of the 16S rRNA gene and dominance of Chloroflexi, Firmicutes, Synergistetes and Proteobacteria phyla was found. The relative abundance of these potential hydrolytic phyla increased as a higher fraction of FW was jointly treated. Moreover, whereas Specific Methanogenic Activity (SMA) rose from 10 to 51 mL CH4 g(-1) VS, Methanosarcinales order increased from 34.0% over 80.0% of total Archaea, being Methanosaeta the dominant genus. The effect o…

0301 basic medicineEnvironmental EngineeringPopulationBiogasWastewater010501 environmental sciencesManagement Monitoring Policy and LawWaste Disposal Fluid01 natural sciencesMethanosaeta03 medical and health sciencesBioreactorsIlluminaBiogasRNA Ribosomal 16SAnaerobic digestionMicrobial communityBioreactorAnaerobiosisFood scienceeducationWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental scienceseducation.field_of_studybiologyChemistryFood wasteGeneral Medicinebiology.organism_classificationAnaerobic digestionAnMBR030104 developmental biologyWastewaterMicrobial population biologyBiofuelsMethanosarcinalesFood AdditivesMethaneJournal of Environmental Management
researchProduct

From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures

2017

Background Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for the first time. Results High-strength liquor from acidified grass biomass exhibited a low biodiversity, which differed greatly depen…

0301 basic medicineFirmicuteslcsh:BiotechnologyPopulationManagement Monitoring Policy and LawApplied Microbiology and BiotechnologyMethanosaetalcsh:FuelActinobacteria03 medical and health scienceslcsh:TP315-360lcsh:TP248.13-248.65Food scienceeducationeducation.field_of_studybiologyRenewable Energy Sustainability and the EnvironmentResearchMethanosarcinabiology.organism_classificationAnaerobic digestion030104 developmental biologyGeneral EnergyAgronomyMethanomicrobiumBiotechnologyMesophileBiotechnology for Biofuels
researchProduct

Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions

2017

[EN] Microbial communities were thoroughly characterized in a mesophilic anaerobic membrane bioreactor (AnMBR) and a thermophilic continuous stirred tank reactor (CSTR), which were both treating recalcitrant microalgal biomass dominated by Scenedesmus. 16S rRNA amplicon sequencing analysis was performed when the AnMBR achieved 70% algal biodegradation and revealed high microbial diversity, probably due to the high solid retention time (SRT) of the AnMBR configuration. The bacterial community consisted of Chloroflexi (27.9%), WWE1 (19.0%) and Proteobacteria (15.4%) as the major phyla, followed by Spirochaetes (7.7%), Bacteroidetes (5.9%) and Firmicutes (3.6%). These phyla are known to exhibi…

0301 basic medicinebiologyFirmicutesScenedesmus spp.ThermophileMembrane technology010501 environmental sciencesbiology.organism_classification01 natural sciencesMethanogenMethanosaeta03 medical and health sciencesAnaerobic digestion030104 developmental biologyAnaerobic digestionBotanyFood scienceProteobacteriaAgronomy and Crop ScienceMicrobial community analysisScenedesmusTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesMesophile
researchProduct

Effect of substrate composition on the stability and microbial community of an anaerobic expanded granular sludge bed reactor treating printing solve…

2019

Abstract The performance and microbial community analysis of an expanded granular sludge bed reactor (EGSB) treating wastewater polluted with mixtures of ethanol and glycol ethers –such as 1-ethoxy-2-propanol (E2P) and 1-methoxy-2-propanol (M2P)– were evaluated. The results showed good EGSB performance during start-up (100% of ethanol) in terms of global removal efficiency (RE > 95%). When glycol ethers were added, an initial adaptation period was observed of ~20 days. While the RE of M2P became complete, the RE of E2P reached only 65%. The proportion of glycol ethers was gradually increased and at the end of this study only a binary mixture of E2P and M2P was fed. In the last stage, the gl…

0301 basic medicineeducation.field_of_studybiologyChemistry030106 microbiologyPopulation010501 environmental sciencesbiology.organism_classificationPulp and paper industry01 natural sciencesMicrobiologyMethanomethylovoransMethanosaetaBiomaterials03 medical and health sciencesGlycol etherschemistry.chemical_compoundMicrobial population biologyWastewaterMethanoleducationWaste Management and Disposal0105 earth and related environmental sciencesGeobacterInternational Biodeterioration & Biodegradation
researchProduct

Proteinaceous Surface Layers ofArchaea: Ultrastructure and Biochemistry

2014

The cell walls of the Archaea are composed of different polymers such as glutaminylglycan, heterosaccharide, methanochondroitin, pseudomurein, protein, glycoprotein, or glycocalyx. The S-layer glycoprotein of Halobacterium salinarum was the first glycoprotein discovered in bacteria and archaea. Initially, the novel cell wall structures were viewed as curiosities, and their taxonomic significance was not realized until the concept of the Archaea was published. At this time, the results of cell wall studies supported the new view of the phylogeny of the Bacteria and Archaea. Many archaea possess proteinaceous surface layers (S layers), which form two-dimensional regular arrays. The chemical s…

Cell wallbiologyBiochemistryMethanothermus fervidusHaloferax volcaniiUltrastructureHalobacterium salinarumMethanosaeta conciliibiology.organism_classificationBacteriaArchaea
researchProduct