Search results for "Method"
showing 10 items of 13253 documents
A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations
2019
Abstract In this paper we show a strategy to devise third order iterative methods based on classic second order ones such as Steffensen’s and Kurchatov’s. These methods do not require the evaluation of derivatives, as opposed to Newton or other well known third order methods such as Halley or Chebyshev. Some theoretical results on convergence will be stated, and illustrated through examples. These methods are useful when the functions are not regular or the evaluation of their derivatives is costly. Furthermore, special features as stability, laterality (asymmetry) and other properties can be addressed by choosing adequate nodes in the design of the methods.
Prediction of Vehicle Crashworthiness Parameters Using Piecewise Lumped Parameters and Finite Element Models
2018
Estimating the vehicle crashworthiness parameters experimentally is expensive and time consuming. For these reasons different modelling approaches are utilized to predict the vehicle behaviour and reduce the need for full-scale crash testing. The earlier numerical methods used for vehicle crashworthiness analysis were based on the use of lumped parameters models (LPM), a combination of masses and nonlinear springs interconnected in various configurations. Nowadays, the explicit nonlinear finite element analysis (FEA) is probably the most widely recognized modelling technique. Although informative, finite element models (FEM) of vehicle crash are expensive both in terms of man-hours put into…
Vision based attitude and altitude estimation for UAVs in dark environments
2011
This paper presents a system dedicated to the real-time estimation of attitude and altitude for unmanned aerial vehicles (UAV) under low light and dark environment. This system consists in a fisheye camera, which allows to cover a large field of view (FOV), and a laser circle projector mounted on a fixed baseline. The approach, close to structured light systems, uses the geometrical information obtained by the projection of the laser circle onto the ground plane and perceived by the camera. We present a theoretical study of the system in which the camera is modelled as a sphere and show that the estimation of a conic on this sphere allows to obtain the attitude and the altitude of the robot…
Omnidirectional vision for UAV: applications to attitude, motion and altitude estimation for day and night conditions
2012
International audience; This paper presents the combined applications of omnidirectional vision featuring on its application to aerial robotics. Omnidirectional vision is first used to compute the attitude, altitude and motion not only in rural environment but also in the urban space. Secondly, a combination of omnidirectional and perspective cameras permits to estimate the altitude. Finally we present a stereo system consisting of an omnidirectional camera with a laser pattern projector enables to calculate the altitude and attitude during the improperly illuminated conditions to dark environments. We demonstrate that omnidirectional camera in conjunction with other sensors is suitable cho…
Visual contact with catadioptric cameras
2015
Abstract Time to contact or time to collision (TTC) is utmost important information for animals as well as for mobile robots because it enables them to avoid obstacles; it is a convenient way to analyze the surrounding environment. The problem of TTC estimation is largely discussed in perspective images. Although a lot of works have shown the interest of omnidirectional camera for robotic applications such as localization, motion, monitoring, few works use omnidirectional images to compute the TTC. In this paper, we show that TTC can be also estimated on catadioptric images. We present two approaches for TTC estimation using directly or indirectly the optical flow based on de-rotation strat…
Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations
2020
[EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation. In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element me…
Scalability of GPU-Processed 3D Distance Maps for Industrial Environments
2018
This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time …
High quality conservative surface mesh generation for swept volumes
2012
We present a novel, efficient and flexible scheme to generate a high quality mesh that approximates the outer boundary of a swept volume. Our approach comes with two guarantees. First, the approximation is conservative, i.e., the swept volume is enclosed by the generated mesh. Second, the one-sided Hausdorff distance of the generated mesh to the swept volume is upper bounded by a user defined tolerance. Exploiting this tolerance the algorithm generates a mesh that is adapted to the local complexity of the swept volume boundary, keeping the overall output complexity remarkably low. The algorithm is two-phased: the actual sweep and the mesh generation. In the sweeping phase we introduce a gen…
Selective visual odometry for accurate AUV localization
2015
In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumina…
2D/3D Object Recognition and Categorization Approaches for Robotic Grasping
2017
International audience; Object categorization and manipulation are critical tasks for a robot to operate in the household environment. In this paper, we propose new methods for visual recognition and categorization. We describe 2D object database and 3D point clouds with 2D/3D local descriptors which we quantify with the k-means clustering algorithm for obtaining the Bag of Words (BOW). Moreover, we develop a new global descriptor called VFH-Color that combines the original version of Viewpoint Feature Histogram (VFH) descriptor with the color quantization histogram, thus adding the appearance information that improves the recognition rate. The acquired 2D and 3D features are used for train…