Search results for "Methyl Methanesulfonate"
showing 8 items of 18 documents
Ras-Related GTPase RhoB Forces Alkylation-Induced Apoptotic Cell Death
2000
rhoB encoding a Ras-related GTPase is immediate-early inducible by genotoxic treatments. To address the question of the physiological role of RhoB in cellular defense, cells stably overexpressing wild-type RhoB protein were generated. Overexpression of RhoB renders cells hypersensitive to the killing effect of alkylating agents including antineoplastic drugs but not to UV-light and doxorubicin. As compared to control cells, RhoB overexpressing cells revealed an increase in the frequency of alkylation-induced apoptotic cell death. This indicates that RhoB is involved in modulating apoptotic signaling. Furthermore, overexpression of RhoB resulted in a prolonged transient block to DNA replicat…
Modulation of induced reversion frequency by nucleotide pool imbalance as a tool for mutant characterization.
1987
Addition of thymidine (TdR) or deoxycytidine (CdR) to the culture medium during posttreatment incubation affected the frequency of mutagen-induced reversion in three hypoxanthine-guanine phosphoribosyl transferase-deficient mutants of V79 Chinese hamster cells. With two of the mutants (E20 and I3), reversions induced by N-ethylnitrosourea, ethyl methanesulfonate, and methyl methanesulfonate were enhanced by TdR and were either decreased (E20) or not affected (I3) by CdR. With the third mutant (E21), alkylating agent-induced reversions were enhanced by CdR and decreased by TdR. Finally, 6-amino-2-hydroxypurine induced reversions were enhanced by TdR in mutant I3 and were decreased by TdR or …
Apaf-1 deficient mouse fibroblasts are resistant to MNNG and MMS-induced apoptotic death without attenuation of Bcl-2 decline.
2005
Abstract Simple alkylating agents induce cell death by activating the apoptotic pathway. In rodent fibroblasts, apoptosis triggered by DNA methylation lesions is executed via the mitochondrial damage pathway. Here, we studied cell death induced by the methylating agents methyl methanesulfonate (MMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in mouse fibroblasts wild-type (wt) and deficient for Apaf-1 (apaf-1 knockout cells). Apaf-1 is an essential component of the apoptosome complex that becomes activated upon cytochrome c release from mitochondria. We show that apaf-1 knockout cells are more resistant to the cytotoxic effect (as measured by WST assay) of methylating agents. This is d…
Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fo…
2001
c-Fos and p53 are DNA damage-inducible proteins that are involved in gene regulation, cell cycle checkpoint control and cell proliferation following exposure to genotoxic agents. To investigate comparatively the role of c-Fos and p53 in the maintenance of genomic stability and the induction of apoptosis, we generated mouse fibroblast cell lines from knockout mice deficient for either c-fos (fos -/-) or p53 (p53-/-) or for both gene products (fosp53-/-). The sensitivity of these established cell lines was compared with the corresponding wild-type cells as to the cytotoxic, clastogenic and apoptosis-inducing effects of ultraviolet (UV-C) light and methyl methanesulfonate (MMS). Additionally, …
Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?
2007
In mammalian cells, 7,8-dihydro-8-oxoguanine (8-oxoG) and some other oxidative guanine modifications are removed from the DNA by base excision repair, which is initiated by OGG1 protein. We have tested whether this repair is inducible in mouse embryonic fibroblasts (MEFs), MCF-7 breast cancer cells and primary human fibroblasts by a pretreatment with the photosensitizer Ro19-8022 plus light, which generates predominantly 8-oxoG, or with methyl methanesulfonate (MMS), which generates alkylated bases and abasic sites (AP sites). The results indicate that the repair rate of the oxidative guanine modifications induced by the photosensitizer was not increased if a priming dose of the oxidative o…
Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents.
1997
Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Alth…
Transcriptional activation of the small GTPase gene rhoB by genotoxic stress is regulated via a CCAAT element
2001
The gene encoding the Ras-related GTPase RhoB-specific is immediate-early inducible by genotoxic treatments. Regulation of transcriptional activation of rhoB is still unclear. Here we show that cells lacking either p53 or c-Fos are not different from wild-type cells with respect to the level of rhoB induction upon UV irradiation, indicating that these transcription factors are not crucial for stimulation of rhoB mRNA expression. Extracts from UV-irradiated and non-irradiated cells revealed similar DNA-binding activities to a 0.17 kb rhoB promoter fragment harboring the functional element(s) necessary for stimulation of rhoB by UV light. By means of immunoprecipitation we found that an ATF-2…
Inhibition of Protein Isoprenylation Impairs Rho-Regulated Early Cellular Response to Genotoxic Stress
2000
Activation of c-Jun N-terminal kinases (JNKs) and nuclear factor-kappaB (NF-kappaB) are early cellular responses to genotoxic stress involved in the regulation of gene expression. Pretreatment of cells with the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin blocked stimulation of JNK1 activity by UV irradiation and by treatment with the alkylating compound methyl methanesulfonate but did not affect activation of extracellular signal-regulated kinase 2 by UV light. Lovastatin also attenuated UV-induced degradation of the NF-kappaB inhibitor IkappaBalpha. The effects of lovastatin on UV-triggered stimulation of JNK1 as well as on IkappaBalpha degradation were reverted by cotreatmen…