Search results for "Methyltransferases"
showing 10 items of 78 documents
Sex-specific windows for high mRNA expression of DNA methyltransferases 1 and 3A and methyl-CpG-binding domain proteins 2 and 4 in human fetal gonads
2006
DNA methyltransferases (DNMTs) and 5-methyl-CpG-binding domain proteins (MBDs) are involved in the acquisition of parent-specific epigenetic modifications in human male and female germ cells. Reverse Northern blot analyses demonstrated sex-specific differences in mRNA expression for the maintenance DNMT1 and the de novo DNMT3A in developing testis and ovary. In fetal testis DNMT1 and DNMT3A expression peaked in mitotically arrested spermatogonia around 21 weeks gestation. In fetal ovary transcriptional upregulation of DNMT1 and DNMT3A occurred during a very brief period at 16 weeks gestation, when the oocytes proceeded through meiotic prophase. Fetal gonads showed several fold higher DNMT3A…
Establishment and functional validation of a structural homology model for human DNA methyltransferase 1
2003
Changes in DNA methylation patterns play an important role in tumorigenesis. The DNA methyltransferase 1 (DNMT1) protein represents a major DNA methyltransferase activity in human cells and is therefore a prominent target for experimental cancer therapies. However, there are only few available inhibitors and their high toxicity and low specificity have so far precluded their broad use in chemotherapy. Based on the strong conservation of catalytic DNA methyltransferase domains we have used a homology modeling approach to determine the three-dimensional structure of the DNMT1 catalytic domain. Our results suggest an overall structural conservation with other DNA methyltransferases but also in…
Antitumor Effects of a Combined 5-Aza-2′Deoxycytidine and Valproic Acid Treatment on Rhabdomyosarcoma and Medulloblastoma in Ptch Mutant Mice
2009
Abstract Patched (Ptch) heterozygous mice develop medulloblastoma (MB) and rhabdomyosarcoma (RMS) resembling the corresponding human tumors. We have previously shown that epigenetic silencing of the intact Ptch allele contributes to tumor formation in this model. Here, we investigated whether targeting of epigenetic silencing mechanisms could be useful in the treatment of Ptch-associated cancers. A reduction of endogenous DNA methyltransferase1 (Dnmt1) activity significantly reduced tumor incidence in heterozygous Ptch knockout mice. A combined treatment with the Dnmt inhibitor 5-aza-2′deoxycytidine (5-aza-dC) and the histone deacetlyase (HDAC) inhibitor valproic acid (VPA) efficiently prev…
Comprehensive DNA methylation analysis of the Aedes aegypti genome
2016
AbstractAedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (…
Cork Taint of Wines: Role of the Filamentous Fungi Isolated from Cork in the Formation of 2,4,6-Trichloroanisole by O Methylation of 2,4,6-Trichlorop…
2002
ABSTRACT Cork taint is a musty or moldy off-odor in wine mainly caused by 2,4,6-trichloroanisole (2,4,6-TCA). We examined the role of 14 fungal strains isolated from cork samples in the production of 2,4,6-TCA by O methylation of 2,4,6-trichlorophenol (2,4,6-TCP). The fungal strains isolated belong to the genera Penicillium (four isolates); Trichoderma (two isolates); and Acremonium , Chrysonilia , Cladosporium , Fusarium , Mortierella , Mucor , Paecilomyces , and Verticillium (one isolate each). Eleven of these strains could produce 2,4,6-TCA when they were grown directly on cork in the presence of 2,4,6-TCP. The highest levels of bioconversion were carried out by the Trichoderma and Fusar…
Molecular analysis of METTL1, a novel human methyltransferase-like gene with a high degree of phylogenetic conservation.
1999
A novel human gene, METTL1, has been identified by its sequence similarity to the yeast ORF YDL201w. The human cDNA and the genomic structure of METTL1 have been analyzed. The transcript contains 1292 nucleotides and codes for a protein of 276 amino acids. The gene consists of seven exons and extends over 3.5 kb. The six introns vary in length between 93 and 1137 nucleotides. The gene is transcribed in a large variety of organs and tissues and shows differential splicing of two exons, giving rise to at least three different transcripts. The METTL1 gene was assigned to chromosome 12q13 by radiation hybrid mapping. The METTL1 gene product shows high sequence similarities to putative proteins …
Genotype and Allele Frequencies of Drug-Metabolizing Enzymes and Drug Transporter Genes Affecting Immunosuppressants in the Spanish White Population
2013
Interpatient variability in drug response can be widely explained by genetically determined differences in metabolizing enzymes, drug transporters, and drug targets, leading to different pharmacokinetic and/or pharmacodynamic behaviors of drugs. Genetic variations affect or do not affect drug responses depending on their influence on protein activity and the relevance of such proteins in the pathway of the drug. Also, the frequency of such genetic variations differs among populations, so the clinical relevance of a specific variation is not the same in all of them. In this study, a panel of 33 single nucleotide polymorphisms in 14 different genes (ABCB1, ABCC2, ABCG2, CYP2B6, CYP2C19, CYP2C…
5-methylcytosine modification of an Epstein–Barr virus noncoding RNA decreases its stability
2020
Many cellular noncoding RNAs contain chemically modified nucleotides that are essential for their function. The Epstein–Barr virus expresses two highly abundant noncoding RNAs called EBV-encoded RNA 1 (EBER1) and EBER2. To examine whether these viral RNAs contain modified nucleotides, we purified native EBERs from EBV-infected cells and performed mass spectrometry analysis. While EBER2 contains no modified nucleotides at stoichiometric amounts, EBER1 was found to carry 5-methylcytosine (m5C) modification. Bisulfite sequencing indicated that a single cytosine of EBER1 is methylated in ∼95% of molecules, and the RNA methyltransferase NSUN2 was identified as the EBER1-specific writer. Intrigui…
Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity that Marks Chromosomal Polycomb Sites
2002
AbstractEnhancer of Zeste is a Polycomb Group protein essential for the establishment and maintenance of repression of homeotic and other genes. In the early embryo it is found in a complex that includes ESC and is recruited to Polycomb Response Elements. We show that this complex contains a methyltransferase activity that methylates lysine 9 and lysine 27 of histone H3, but the activity is lost when the E(Z) SET domain is mutated. The lysine 9 position is trimethylated and this mark is closely associated with Polycomb binding sites on polytene chromosomes but is also found in centric heterochromatin, chromosome 4, and telomeric sites. Histone H3 methylated in vitro by the E(Z)/ESC complex …
Translational adaptation to heat stress is mediated by RNA 5‐methylcytosine in Caenorhabditis elegans
2021
Abstract Methylation of carbon‐5 of cytosines (m5C) is a post‐transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C‐methyltransferases have been studied, the impact of the global cytosine‐5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non‐essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5C sites in the RNome in vivo. We find that NSUN‐4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline bein…