Search results for "Metric geometry"

showing 10 items of 222 documents

A sub-supersolution approach for Neumann boundary value problems with gradient dependence

2020

Abstract Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.

Gradient dependenceClass (set theory)Applied Mathematics010102 general mathematicsGeneral EngineeringNeumann problemGeneral MedicineDifferential operator01 natural sciencesPositive solution010101 applied mathematicsComputational MathematicsQuasilinear elliptic equationSettore MAT/05 - Analisi MatematicaNeumann boundary conditionMathematics::Metric GeometryApplied mathematicsBoundary value problem0101 mathematicsSub-supersolutionGeneral Economics Econometrics and FinanceAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Quasihyperbolic boundary condition: Compactness of the inner boundary

2011

We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact. peerReviewed

Gromov boundaryquasihyperbolic metricMathematics::Complex VariablesGeneral Mathematicsgrowth conditionMathematical analysisBoundary (topology)Mixed boundary conditionGromov-reuna30C65Gromov boundaryMetric spaceCompact spaceGromov hyperbolicityGromov-hyperbolisuusMetric (mathematics)Neumann boundary conditionMathematics::Metric Geometrykasvuehtokvasihyperbolinen metriikkaBoundary value problemMathematicsIllinois Journal of Mathematics
researchProduct

Gromov hyperbolicity and quasihyperbolic geodesics

2014

We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition. peerReviewed

Gromov hyperbolicityMathematics::Complex Variablesquasihyperbolic metricMathematics::Metric GeometryGehring-Hayman inequality
researchProduct

Metric Lie groups admitting dilations

2019

We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie …

Group (mathematics)54E40 (Primary) 53C30 54E45 (Secondary)General MathematicsLie groupMetric Geometry (math.MG)Group Theory (math.GR)AutomorphismManifoldCombinatoricsMetric spaceMathematics - Metric GeometryMetric (mathematics)FOS: MathematicsLocally compact spaceInfinitesimal generatorMathematics - Group TheoryMathematics
researchProduct

Hardy spaces and quasiconformal maps in the Heisenberg group

2023

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

Hardy spacesMathematics - Complex VariablesMetric Geometry (math.MG)quasiconformal mapsHeisenberg groupPrimary: 30L10 Secondary: 30C65 30H10Functional Analysis (math.FA)Mathematics - Functional AnalysiskvasikonformikuvauksetMathematics - Metric GeometryFOS: MathematicsHardyn avaruudetComplex Variables (math.CV)Carleson measuresAnalysis
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Monte carlo methods in quantum many-body theories

2008

This is an introduction of Monte Carlo methods for beginners and their application to some quantum many-body problems. Special emphasis is done on the methodology and the general characteristics of Monte Carlo calculations. An introduction to the applications to many-body physics, specifically the Variational Monte Carlo and the Green Function Monte Carlo, is also included.

Hybrid Monte CarloComputer scienceQuantum Monte CarloMonte Carlo methodDynamic Monte Carlo methodMathematics::Metric GeometryMonte Carlo method in statistical physicsMonte Carlo integrationStatistical physicsVariational Monte CarloMonte Carlo molecular modeling
researchProduct

Total curvatures of convex hypersurfaces in hyperbolic space

1999

We give sharp upper estimates for the difference circumradius minus inradius and for the angle between the radial vector (respect to the center of an inball) and the normal to the boundary of a compact $h$-convex domain in the hyperpolic space. We apply these estimates to get the limit at the infinity for the quotients Volume/Area and (Total $k$-mean curvature)/Area of a family of $h$-convex domains which expand over the whole space. The theorem for the first quotient gives an extension to arbitrary dimension of a result of Santalo and Yanez for the hyperbolic plane.

Hyperbolic groupGeneral MathematicsHyperbolic spaceHyperbolic 3-manifoldMathematical analysisHyperbolic angleMathematics::Metric GeometryHyperbolic manifoldUltraparallel theoremHyperbolic triangleRelatively hyperbolic groupMathematicsIllinois Journal of Mathematics
researchProduct

An Efficient Algorithm for Helly Property Recognition in a Linear Hypergraph

2001

International audience; In this article we characterize bipartite graphs whose associated neighborhood hypergraphs have the Helly property. We examine incidence graphs both hypergraphs and linear hypergraphs and we give a polynomial algorithm to recognize if a linear hypergraph has the Helly property.

HypergraphProperty (philosophy)General Computer Science[ INFO.INFO-NI ] Computer Science [cs]/Networking and Internet Architecture [cs.NI]0102 computer and information sciences02 engineering and technologyComputer Science::Computational Geometry01 natural sciencesPolynomial algorithmTheoretical Computer ScienceCombinatorics[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI][ INFO.INFO-DC ] Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Computer Science::Discrete Mathematics[ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineeringMathematics::Metric GeometryComputingMilieux_MISCELLANEOUSMathematicsIncidence (geometry)Discrete mathematicsMathematics::CombinatoricsEfficient algorithm16. Peace & justice010201 computation theory & mathematics[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Bipartite graph020201 artificial intelligence & image processing[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Computer Science(all)Electronic Notes in Theoretical Computer Science
researchProduct

Charge Transfer Plasmons in Dimeric Electron Clusters

2020

The tunability of the optical response of dimers of metal clusters and nanoparticles makes them ideal for many applications from sensing and imaging to inducing chemical reactions. We have studied charge transfer plasmons in separate and linked dimers of closed-shell electron clusters of 8 and 138 electrons using time-dependent density functional theory. The simple model clusters enable the systematic study of the charge transfer phenomenon from the electronic perspective. To identify the charge transfer plasmons, we have developed an index, the Charge Transfer Ratio, for quantifying the charge transfer nature of the excitations. In addition, we analyze the induced transition density and th…

Materials sciencePhysics::OpticsNanoparticle02 engineering and technologyElectronoptiset ominaisuudet010402 general chemistry01 natural sciencesChemical reactionPhysics::Atomic and Molecular Clusterscharge transfer plasmonsMathematics::Metric GeometryPhysical and Theoretical ChemistryPlasmonCondensed Matter::Quantum GasesIdeal (set theory)tiheysfunktionaaliteoriaCharge (physics)021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsplasmonitGeneral EnergyChemical physicsnanohiukkasetCondensed Matter::Strongly Correlated Electrons0210 nano-technologyMetal clustersThe Journal of Physical Chemistry C
researchProduct