Search results for "Metric geometry"
showing 10 items of 222 documents
A sub-supersolution approach for Neumann boundary value problems with gradient dependence
2020
Abstract Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.
Quasihyperbolic boundary condition: Compactness of the inner boundary
2011
We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact. peerReviewed
Gromov hyperbolicity and quasihyperbolic geodesics
2014
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition. peerReviewed
Metric Lie groups admitting dilations
2019
We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie …
Hardy spaces and quasiconformal maps in the Heisenberg group
2023
We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…
Conformality and $Q$-harmonicity in sub-Riemannian manifolds
2016
We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.
Monte carlo methods in quantum many-body theories
2008
This is an introduction of Monte Carlo methods for beginners and their application to some quantum many-body problems. Special emphasis is done on the methodology and the general characteristics of Monte Carlo calculations. An introduction to the applications to many-body physics, specifically the Variational Monte Carlo and the Green Function Monte Carlo, is also included.
Total curvatures of convex hypersurfaces in hyperbolic space
1999
We give sharp upper estimates for the difference circumradius minus inradius and for the angle between the radial vector (respect to the center of an inball) and the normal to the boundary of a compact $h$-convex domain in the hyperpolic space. We apply these estimates to get the limit at the infinity for the quotients Volume/Area and (Total $k$-mean curvature)/Area of a family of $h$-convex domains which expand over the whole space. The theorem for the first quotient gives an extension to arbitrary dimension of a result of Santalo and Yanez for the hyperbolic plane.
An Efficient Algorithm for Helly Property Recognition in a Linear Hypergraph
2001
International audience; In this article we characterize bipartite graphs whose associated neighborhood hypergraphs have the Helly property. We examine incidence graphs both hypergraphs and linear hypergraphs and we give a polynomial algorithm to recognize if a linear hypergraph has the Helly property.
Charge Transfer Plasmons in Dimeric Electron Clusters
2020
The tunability of the optical response of dimers of metal clusters and nanoparticles makes them ideal for many applications from sensing and imaging to inducing chemical reactions. We have studied charge transfer plasmons in separate and linked dimers of closed-shell electron clusters of 8 and 138 electrons using time-dependent density functional theory. The simple model clusters enable the systematic study of the charge transfer phenomenon from the electronic perspective. To identify the charge transfer plasmons, we have developed an index, the Charge Transfer Ratio, for quantifying the charge transfer nature of the excitations. In addition, we analyze the induced transition density and th…