Search results for "Metric tensor"

showing 6 items of 26 documents

On the range of the attenuated ray transform for unitary connections

2013

We describe the range of the attenuated ray transform of a unitary connection on a simple surface acting on functions and 1-forms. We use this to determine the range of the ray transform acting on symmetric tensor fields.

Surface (mathematics)Mathematics - Differential Geometryray transformGeneral MathematicsAstrophysics::High Energy Astrophysical PhenomenaMathematical analysista111Unitary stateConnection (mathematics)Range (mathematics)Mathematics - Analysis of PDEsDifferential Geometry (math.DG)Simple (abstract algebra)Quantum mechanicsFOS: MathematicsSymmetric tensorAnalysis of PDEs (math.AP)Mathematics
researchProduct

Some algebraic and topological properties of the nonabelian tensor product

2013

Several authors investigated the properties which are invariant under the passage from a group to its nonabelian tensor square. In the present note we study this problem from the viewpoint of the classes of groups and the methods allow us to prove a result of invariance for some geometric properties of discrete groups.

Tensor contractionNonabelian tensor productTensor product of algebrasGeneral MathematicsTensor product of Hilbert spaceshomologyTopologyAlgebraalgebraic topologyTensor productSymmetric tensorRicci decompositionwsg propertyTensor product of modulesfree productSettore MAT/03 - GeometriaTensor densityMathematics
researchProduct

Tensor Operators and the Wigner-Eckart Theorem

2007

In this chapter we pave the way to the use of the coupling methods of Chap. 1 for manipulating operators and their matrix elements. To enable smooth application of the angular momentum methods, we introduce so-called spherical tensor operators. Spherical tensors can be related to Cartesian tensors. A Cartesian tensor of a given Cartesian rank can be reduced to spherical tensors of several spherical ranks. There is a very convenient procedure, the so-called Wigner-Eckart theorem, to separate the part containing the projection quantum numbers from the rest of the matrix element of a spherical tensor operator. The remaining piece, called the reduced matrix element, is rotationally invariant an…

Tensor contractionPhysicsWigner–Eckart theoremCartesian tensorSymmetric tensorTensorTensor densityTensor operatorMathematical physicsTensor field
researchProduct

Intrinsic characterization of space‐time symmetric tensors

1992

This paper essentially deals with the classification of a symmetric tensor on a four‐dimensional Lorentzian space. A method is given to find the algebraic type of such a tensor. A system of concomitants of the tensor is constructed, which allows one to know the causal character of the eigenspace corresponding to a given eigenvalue, and to obtain covariantly their eigenvectors. Some algebraic as well as differential applications are considered.

Tensor contractionPure mathematicsFísica matemàticaTensor product of Hilbert spacesStatistical and Nonlinear PhysicsTopologia algebraicaTopologyTensor fieldSymmetric tensorRicci decompositionTensorMetric tensor (general relativity)Tensor densityMathematical PhysicsMathematicsJournal of Mathematical Physics
researchProduct

Two-Perfect Fluid Interpretation of an Energy Tensor

1990

The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained.

Weyl tensorPhysicsTensor contractionFluidsPhysics and Astronomy (miscellaneous)Geometria diferencialMathematical analysisTensor fieldPhysics::Fluid Dynamicssymbols.namesakeExact solutions in general relativityRelativitat general (Física)symbolsSymmetric tensorStress–energy tensorTensorTensor density
researchProduct

Unique continuation results for certain generalized ray transforms of symmetric tensor fields

2022

Let $I_{m}$ denote the Euclidean ray transform acting on compactly supported symmetric $m$-tensor field distributions $f$, and $I_{m}^{*}$ be its formal $L^2$ adjoint. We study a unique continuation result for the normal operator $N_{m}=I_{m}^{*}I_{m}$. More precisely, we show that if $N_{m}$ vanishes to infinite order at a point $x_0$ and if the Saint-Venant operator $W$ acting on $f$ vanishes on an open set containing $x_0$, then $f$ is a potential tensor field. This generalizes two recent works of Ilmavirta and M\"onkk\"onen who proved such unique continuation results for the ray transform of functions and vector fields/1-forms. One of the main contributions of this work is identifying t…

integraaliyhtälötosittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsSaint-Venant operatortomografiaFOS: MathematicsUCP for ray transformstensor tomographyGeometry and Topologyfunktionaalianalyysiinversio-ongelmatsymmetric tensor fieldsAnalysis of PDEs (math.AP)
researchProduct