Search results for "MgF2"

showing 3 items of 3 documents

Ab initio calculations of pure and Co+2-doped MgF2 crystals

2020

This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.

AB INITIO CALCULATIONSNuclear and High Energy PhysicsMaterials scienceSpin statesBand gapAb initioENERGY GAP02 engineering and technologyFLUORINE COMPOUNDS01 natural sciences7. Clean energyMolecular physicsAb initio quantum chemistry methodsCobalt dopant0103 physical sciencesPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]MgF2010306 general physicsFluorideInstrumentationCOBALT DOPANTSDopantCRYSTAL ATOMIC STRUCTUREDopingCOBALT COMPOUNDSMAGNESIUM COMPOUNDSDOPANT ENERGY LEVELS021001 nanoscience & nanotechnologyVIBRATIONAL STRUCTURESCALCULATIONSCRYSTALSGROUND STATELinear combination of atomic orbitalsCELL PROLIFERATIONAb initioGROUND STATE LEVELS0210 nano-technologyGround state
researchProduct

Ab initio calculations of the atomic and electronic structure of MgF2 (011) and (111) surfaces

2011

Abstract The results of ab initio slab calculations of surface relaxations, rumplings and charge distribution for the different terminations of the MgF2 (011) and (111) polar surfaces are presented and discussed. We have employed the computer code CRYSTAL with the Gaussian basis set and the hybrid B3PW exchange-correlation functional. Despite the ionic nature of the chemical bonding at both surfaces, a considerable decrease of the optical band gap is predicted (1.3 eV or 10%) for the (111) surface as compared to the bulk.

Materials scienceBand gapab initio calculationsPhysicsQC1-999Ab initioGeneral Physics and AstronomyCharge densityIonic bondingmgf2Electronic structuresurfacesMolecular physicsatomic and electronic structureChemical bondAb initio quantum chemistry methodsAtomic physicsSIESTA (computer program)Open Physics
researchProduct

Kinetics of dimer F2 type center annealing in MgF2 crystals

2018

Authors are greatly indebted to V. Lisitsyn, A. Ch. Lushchik and R.Vila for stimulating discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The calculations were performed using facilities of the Stuttgart Supercomputer Center (project DEFTD 12939).

DiffusionAnnealing kinetics:NATURAL SCIENCES:Physics [Research Subject Categories]MgF2F2 centersRadiation defectsF centers
researchProduct