Search results for "MicroRNAs"

showing 10 items of 350 documents

The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state

2012

AbstractMiR-125b-1 maps at 11q24, a chromosomal region close to the epicenter of 11q23 deletions in chronic lymphocytic leukemias (CLLs). Our results establish that both aggressive and indolent CLL patients show reduced expression of miR-125b. Overexpression of miR-125b in CLL-derived cell lines resulted in the repression of many transcripts encoding enzymes implicated in cell metabolism. Metabolomics analyses showed that miR-125b overexpression modulated glucose, glutathione, lipid, and glycerolipid metabolism. Changes on the same metabolic pathways also were observed in CLLs. We furthermore analyzed the expression of some of miR-125b–target transcripts that are potentially involved in the…

Blotting WesternImmunologyBiologyReal-Time Polymerase Chain ReactionBiochemistryNODownregulation and upregulationmicroRNABiomarkers TumorHumansMetabolomicsRNA MessengerPsychological repressionCells CulturedCell ProliferationOligonucleotide Array Sequence AnalysisRegulation of gene expressionB-LymphocytesLymphoid NeoplasiaReverse Transcriptase Polymerase Chain ReactionCell growthGene Expression ProfilingCell BiologyHematologyLeukemia Lymphocytic Chronic B-CellMolecular biologyGene Expression Regulation NeoplasticGene expression profilingMicroRNAsMetabolic pathwayCell Transformation NeoplasticChromosomal regionCancer researchBlood
researchProduct

Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature oste…

2015

// Maria Rita Pitari 1 , Marco Rossi 1 , Nicola Amodio 1 , Cirino Botta 1 , Eugenio Morelli 1 , Cinzia Federico 1 , Annamaria Gulla 1 , Daniele Caracciolo 1 , Maria Teresa Di Martino 1 , Mariamena Arbitrio 2 , Antonio Giordano 3, 4 , Pierosandro Tagliaferri 1 , Pierfrancesco Tassone 1, 4 1 Department of Experimental and Clinical Medicine and T. Campanella Cancer Center, Magna Graecia University, S. Venuta University Campus, Catanzaro, Italy 2 ISN-CNR, Roccelletta di Borgia, Catanzaro, Italy 3 Department of Human Pathology and Oncology, University of Siena, Siena, Italy 4 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology,…

Bone diseaseMessengerOsteoclastsTumor Microenvironment3' Untranslated RegionsMultiple myelomaTumorbiologyMesenchymal Stromal CellsRANKLProtein Inhibitors of Activated STATUp-Regulationmedicine.anatomical_structureOncologyRANKLmiRNAsmiR-21MiRNAMultiple MyelomaMiR-21; MiRNAs; Multiple myeloma bone disease; OPG; RANKL; 3' Untranslated Regions; Bone Marrow Cells; Bone Resorption; Cell Adhesion; Cell Line Tumor; Coculture Techniques; HEK293 Cells; Humans; Interleukin-6; Lentivirus; Mesenchymal Stromal Cells; MicroRNAs; Molecular Chaperones; Multiple Myeloma; Osteoclasts; Osteoprotegerin; Protein Inhibitors of Activated STAT; RANK Ligand; RNA Messenger; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Up-Regulation; OncologyResearch Papermusculoskeletal diseasesSTAT3 Transcription FactorStromal cellBone Marrow CellsBone resorptionCell LineOsteoprotegerinCell Line TumormedicineCell AdhesionHumansRNA MessengerBone Resorptionbusiness.industryInterleukin-6LentivirusRANK LigandOsteoprotegerinMesenchymal Stem Cellsmedicine.diseaseMolecular medicineCoculture TechniquesMicroRNAsmultiple myeloma bone diseaseHEK293 CellsImmunologyCancer researchbiology.proteinRNAOPGBone marrowStromal CellsbusinessMolecular ChaperonesOncotarget
researchProduct

miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone di…

2013

Skeletal homeostasis relies upon a fine tuning of osteoclast (OCLs)-mediated bone resorption and osteoblast (OBLs)-dependent bone formation. This balance is unsettled by multiple myeloma (MM) cells, which impair OBL function and stimulate OCLs to generate lytic lesions. Emerging experimental evidence is disclosing a key regulatory role of microRNAs (miRNAs) in the regulation of bone homeostasis suggesting the miRNA network as potential novel target for the treatment of MM-related bone disease. Here, we report that miR-29b expression decreases progressively during human OCL differentiation in vitro. We found that lentiviral transduction of miR-29b into OCLs, even in the presence of MM cells,…

Bone diseasePhysiologyCellular differentiationCathepsin KClinical BiochemistryGene ExpressionOsteoclastsOsteolysisMMP9Cathepsin KCells CulturedTartrate-resistant acid phosphataseTumorCulturedReceptor Activator of Nuclear Factor-kappa BGenes fosCell DifferentiationOsteoblastCell biologyIsoenzymesmultiple myelomamedicine.anatomical_structureMatrix Metalloproteinase 9osteoclastMatrix Metalloproteinase 2medicine.medical_specialtyfosCellsAcid PhosphataseBiologyCollagen Type IBone resorptionCell LineOsteoclastCell Line TumorInternal medicinemedicineHumansBone ResorptionOsteoblastsmicroRNA.NFATC Transcription FactorsTartrate-Resistant Acid PhosphatasemiR-29bCell Biologymedicine.diseaseActinsMicroRNAsEndocrinologyGenesAcid Phosphatase; Actins; Bone Resorption; Cathepsin K; Cell Differentiation; Cell Line Tumor; Cells Cultured; Collagen Type I; Gene Expression; Genes fos; Humans; Isoenzymes; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; MicroRNAs; Multiple Myeloma; NFATC Transcription Factors; Osteoblasts; Osteoclasts; Osteolysis; Receptor Activator of Nuclear Factor-kappa BJournal of Cellular Physiology
researchProduct

A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes.

2018

Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas alter…

CD4-Positive T-Lymphocytes0301 basic medicineRegulatory T cellBiologymedicine.disease_causeAutoimmunityMice03 medical and health sciencesNFAT5microRNAImmunogeneticsmedicineAnimalsHumansPI3K/AKT/mTOR pathwaygeographygeography.geographical_feature_categoryNFATC Transcription FactorsAntagomirsFOXP3Forkhead Transcription FactorsGeneral MedicineIsletMice Mutant StrainsMicroRNAsTolerance inductionDiabetes Mellitus Type 1030104 developmental biologymedicine.anatomical_structureCancer researchFemale
researchProduct

miR-155 inhibition sensitizes CD4+ Th cells for TREG mediated suppression.

2009

BackgroundIn humans and mice naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.Principal findingsDNA-Microarray analyses of human as well as murine conventional CD4(+) Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice …

CD4-Positive T-LymphocytesScienceImmunology/ImmunomodulationBiologyModels BiologicalT-Lymphocytes RegulatoryImmune tolerancemiR-155MiceDownregulation and upregulationImmune ToleranceAnimalsHumansIL-2 receptorOligonucleotide Array Sequence AnalysisMultidisciplinaryInnate immune systemGenetics and Genomics/Functional GenomicsQInterleukin-2 Receptor alpha SubunitRPeripheral toleranceFOXP3Forkhead Transcription FactorsTransfectionImmunity InnateCell biologyUp-RegulationKineticsMicroRNAsImmunologyImmunology/Immune ResponseMedicineGenetics and Genomics/Genetics of the Immune SystemResearch ArticlePLoS ONE
researchProduct

Mir-675-5p supports hypoxia-induced drug resistance in colorectal cancer cells.

2022

Abstract Background The uncontrolled proliferation of cancer cells determines hypoxic conditions within the neoplastic mass with consequent activation of specific molecular pathways that allow cells to survive despite oxygen deprivation. The same molecular pathways are often the cause of chemoresistance. This study aims to investigate the role of the hypoxia-induced miR-675-5p in 5-Fluorouracil (5-FU) resistance on colorectal cancer (CRC) cells. Methods CRC cell lines were treated with 5-Fu and incubated in normoxic or hypoxic conditions; cell viability has been evaluated by MTT assay. MiR-675-5p levels were analysed by RT-PCR and loss and gain expression of the miRNA has been obtained by t…

Cancer Research5-fluorouracil (5-FU)Caspase 3MicroRNAApoptosisGene Expression Regulation NeoplasticColorectal cancer (CRC)MicroRNAsOncologyDrug Resistance NeoplasmDrug resistanceCell Line TumorGeneticsHumansFluorouracilColorectal NeoplasmsHypoxiaBMC cancer
researchProduct

Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs

2018

Abstract Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigat…

Cancer ResearchCellBone NeoplasmsBiologyExosomesmedicine.disease_causeCell MovementSettore BIO/13 - Biologia ApplicataosteosarcomamicroRNABiomarkers TumormedicineHumansexosometumor microenvironmentTelomerase reverse transcriptaseCells CulturedCell ProliferationTube formationTumor microenvironmentNeovascularization PathologicGene Expression ProfilingGeneral Medicinemedicine.diseaseMicrovesiclesGene Expression Regulation NeoplasticMicroRNAsmedicine.anatomical_structureCancer researchmicroRNAs profilingOsteosarcomaEndothelium VascularCarcinogenesis
researchProduct

Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells.

2014

BACKGROUND: Recent findings indicate that exosomes released from cancer cells contain microRNAs (miRNAs) that may be delivered to cells of tumor microenvironment. RESULTS: To elucidate whether miRNAs secreted from chronic myelogenous leukemia cells (CML) are shuttled into endothelial cells thus affecting their phenotype, we first analysed miRNAs content in LAMA84 exosomes. Among the 124 miRNAs identified in LAMA84 exosomes, we focused our attention on miR-126 which was found to be over-overexpressed in exosomes compared with producing parental cells. Transfection of LAMA84 with Cy3-labelled miR-126 and co-culture of leukemia cells with endothelial cells (EC) confirmed that miR-126 is shuttl…

Cancer ResearchEndothelial cellsChronic Myelogenous Leukemia CellsVascular Cell Adhesion Molecule-1Exosomes; Chronic Myelogenous Leukemia; microRNA;BiologyExosomesCell MovementSettore BIO/13 - Biologia ApplicataCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositiveCell AdhesionHuman Umbilical Vein Endothelial CellsmedicineHumansChronic Myelogenous LeukemiamiRNATumor microenvironmentExosomes; Endothelial cells; Chronic Myelogenous Leukemia Cells; miRNAmicroRNAResearchTransfectionmedicine.diseaseChemokine CXCL12MicrovesiclesExosomeMicroRNAsLeukemiamedicine.anatomical_structureOncologyCell cultureCancer cellCancer researchMolecular MedicineBone marrowChronic myelogenous leukemia
researchProduct

miRNAs and their potential for use against cancer and other diseases

2007

miRNAs are 19–24 nucleotide long noncoding RNAs found in almost all genetically dissected species, including viruses, plants, nematodes, flies, fish, mice and humans. Rapid advances have been made in understanding their physiological functions, while abnormal patterns of miRNA expression have been found in many disease states, most notably human cancer. It is now clear that miRNAs represent a class of genes with a great potential for use in diagnosis, prognosis and therapy. In this review we will focus on the discoveries that elucidate their crucial role in mammalian diseases, particularly in cancer, and propose that miRNA-based gene therapy might become the potential technology of choice …

Cancer ResearchGenetic enhancementGenetic TherapyGeneral MedicineDiseaseComputational biologyBiologyPrognosisBioinformaticsMicroRNAsOncologyMirna expressionNeoplasmsmicroRNAAnimalsHumansPersonalized therapyGeneHuman cancerFuture Oncology
researchProduct

miR-155expression in antitumor immunity: The higher the better?

2019

MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine…

Cancer ResearchLeukemiaCarcinogenesisBiologymiR-155MicroRNAs03 medical and health sciences0302 clinical medicineImmune system030220 oncology & carcinogenesisGene expressionmicroRNAGeneticsCancer researchAnimalsHumansCytotoxic T cellTumor EscapeImmunotherapyEpigeneticsDown SyndromeSignal transductionTranscription factorGenes, Chromosomes and Cancer
researchProduct