Search results for "MiniBooNE"

showing 9 items of 49 documents

The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem

2011

The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucleon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Particle physicsNuclear Theory010308 nuclear & particles physicsScatteringNuclear TheoryFOS: Physical sciencesFísica01 natural sciencesMiniBooNENuclear physicsNuclear Theory (nucl-th)Cross section (physics)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsNucleonRandom phase approximationCharged current
researchProduct

Minimal models with light sterile neutrinos

2011

We study the constraints imposed by neutrino oscillation experiments on the minimal extensions of the Standard Model (SM) with $n_R$ gauge singlet fermions ("right-handed neutrinos"), that can account for neutrino masses. We consider the most general coupling to SM fields of the new fields, in particular those that break lepton number and we do not assume any a priori hierarchy in the mass parameters. We proceed to analyze these models starting from the lowest level of complexity, defined by the number of extra fermionic degrees of freedom. The simplest choice that has enough free parameters in principle (i.e. two mass differences and two angles) to explain the confirmed solar and atmospher…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physics010308 nuclear & particles physicsFOS: Physical sciencesFísica01 natural sciences7. Clean energyLepton numberStandard ModelMiniBooNEHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry13. Climate action0103 physical sciencesNeutrino010306 general physicsNeutrino oscillation
researchProduct

Sterile neutrino models and nonminimal cosmologies

2012

Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant $w\ensuremath{\ne}\ensuremath{-}1$ dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, ($3+2$) massive neutrino models with $\ensuremath{\sim}0.5\text{ }\text{ }\mathrm{eV}$ sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with nu…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physics010308 nuclear & particles physicsmedia_common.quotation_subjectFísicaLambda-CDM modelAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyUniversePhysical cosmologyMiniBooNEGeneral Relativity and Quantum CosmologyBig Bang nucleosynthesis13. Climate action0103 physical sciencesDark energyHigh Energy Physics::ExperimentNeutrino010306 general physicsmedia_common
researchProduct

New determination of the N-Δ(1232) axial form factors from weak pion production and coherent pion production off nuclei at T2K and MiniBooNE energies…

2010

We re-evaluate our model predictions in Phys. Rev. D 79, 013002 (2009) for different observables in neutrino induced coherent pion production. This comes as a result of the new improved fit to old bubble chamber data of the dominant axial C_5^A nucleon-to-Delta form factor. We find an increase of 20%-30% in the values for the total cross sections. Uncertainties induced by the errors in the determination of C_5^A are computed. Our new results turn out to be compatible within about $1\sigma$ with the former ones. We also stress the existing tension between the recent experimental determination of the \sigma(CC coh \pi^+)}/\sigma(NC coh \pi^0)} $ ratio by the SciBooNE Collaboration and the the…

PhysicsParticle physicsForm factor (quantum field theory)Sigma020206 networking & telecommunicationsObservable02 engineering and technologyMiniBooNEHigh Energy Physics - PhenomenologyPion0202 electrical engineering electronic engineering information engineeringBubble chamber020201 artificial intelligence & image processingProduction (computer science)NeutrinoAIP Conference Proceedings
researchProduct

Neutrinos in Nuclear Physics: RPA, MEC, 2p2h (Pionic Modes of Excitation in Nuclei)

2016

This chapter is devoted to the study of weak interactions on nucleons and nuclei. I pay a special attention to the study of neutrino and antineutrino quasi-elastic reactions in nuclei , which are of the greatest importance for neutrino oscillation experiments, and crucial to achieve the precision goals required to make new discoveries, like the CP violation in the leptonic sector, possible. In particular, I discuss RPA correlations and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions, and the influence of these nuclear effects on the recently measured MiniBooNE flux folded differential cross sections, and on the so-called nucleon axial mass puzzle. The modification…

PhysicsParticle physicsMuon010308 nuclear & particles physicsNuclear TheoryWeak interactionNuclear matter01 natural sciencesNuclear physicsMiniBooNE0103 physical sciencesCP violationHigh Energy Physics::ExperimentNeutrinoNuclear Experiment010306 general physicsNeutrino oscillationNucleon
researchProduct

Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

2009

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…

PhysicsParticle physicsScatteringHadronAstrophysics (astro-ph)General Physics and AstronomyFOS: Physical sciencesAstrophysicsHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NeutrinoNucleonNeutrino oscillationEnergy (signal processing)Lepton
researchProduct

Neutrino flux prediction at MiniBooNE

2009

The booster neutrino experiment (MiniBooNE) searches for nu(mu)->nu(e) oscillations using the O(1 GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the…

PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsNuclear and High Energy PhysicsParticle physicsMesonFaculty of Science\PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHigh Energy Physics - ExperimentMassless particleMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentFermilabNeutrinoNuclear ExperimentNeutrino oscillationLeptonPhysical Review D
researchProduct

Decaying sterile neutrinos and the short baseline oscillation anomalies

2019

The MiniBooNE experiment has observed a significant excess of electron neutrinos in a muon neutrino beam at source-detector distances too short to be compatible with standard neutrino oscillations. The most straightforward explanation for this signal in terms of oscillations between Standard Model neutrinos and a new, sterile, neutrino, is disfavored by null results from experiments looking for muon neutrino disappearance. Here, we discuss the possibility that MiniBooNE data are instead explained by a sterile neutrino that decays quickly back into active neutrinos plus a light boson. The flavor composition of the secondary neutrinos is determined by the sterile neutrino mixing angles, and w…

Sterile neutrinoParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesElectron7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentMiniBooNEHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMuon neutrino010306 general physicsNeutrino oscillationParticle Physics - PhenomenologyBosonPhysicshep-ex010308 nuclear & particles physicsOscillationHigh Energy Physics::Phenomenologyhep-ph3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentPhysical Review D
researchProduct

SOX : short distance neutrino oscillations with Borexino

2014

Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…

Sterile neutrinoPhysics::Instrumentation and Detectorsscintillation counter: liquidtalk: Valencia 2014/07/027. Clean energy01 natural sciences[SPI]Engineering Sciences [physics][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BorexinoSterile neutrinogalliumPhysicsOscillationneutrino: sterilesolarceriumBorexinochromiumchromium-51neutrino: geophysicsNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAnomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinosanomalyneutrino/e: beamScintillatorcerium-144Anomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinos; Nuclear and High Energy PhysicsMiniBooNEsterile neutrinos0103 physical sciences010306 general physicsNeutrino oscillation010308 nuclear & particles physicschromium-51cerium-144calibrationGran SassoLSNDAnomalous oscillationSOXneutrino: familyHigh Energy Physics::Experimentnuclear reactorneutrino: oscillationAnomaly (physics)anomalous oscillationsexperimental resultsneutrino/e: oscillation
researchProduct