Search results for "Missing data"

showing 10 items of 83 documents

A Multi-layer Feed Forward Neural Network Approach for Diagnosing Diabetes

2018

Diabetes is one of the worlds major health problems according to the World Health Organization. Recent surveys indicate that there is an increase in the number of diabetic patients resulting in an increase in serious complications such as heart attacks and deaths. Early diagnosis of diabetes, particularly of type 2 diabetes, is critical since it is vital for patients to get insulin treatments. However, diagnoses could be difficult especially in areas with few medical doctors. It is, therefore, a need for practical methods for the public for early detection and prevention with minimal intervention from medical professionals. A promising method for automated diagnosis is the use of artificial…

Artificial neural networkbusiness.industryComputer science02 engineering and technologyType 2 diabetes030204 cardiovascular system & hematologymedicine.diseaseMachine learningcomputer.software_genreMissing dataData set03 medical and health sciences0302 clinical medicineIntervention (counseling)Diabetes mellitus0202 electrical engineering electronic engineering information engineeringmedicineFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceMedical diagnosisbusinesscomputer2018 11th International Conference on Developments in eSystems Engineering (DeSE)
researchProduct

2013

Currently, a growing number of programs become available in statistical software for multiple imputation of missing values. Among others, two algorithms are mainly implemented: Expectation Maximization (EM) and Multiple Imputation by Chained Equations (MICE). They have been shown to work well in large samples or when only small proportions of missing data are to be imputed. However, some researchers have begun to impute large proportions of missing data or to apply the method to small samples. A simulation was performed using MICE on datasets with 50, 100 or 200 cases and four or eleven variables. A varying proportion of data (3% - 63%) was set as missing completely at random and subsequent…

Binary responseSample size determinationStatisticsExpectation–maximization algorithmEconometricsMain effectImputation (statistics)Missing dataInteractionLogistic regressionMathematicsOpen Journal of Statistics
researchProduct

Cost-description and multiple imputation of missing values: theSATisfaction and adherence to COPD treatment(SAT) study

2018

Aim:This article reports on a retrospective quarterly cost description (CD) performed on 401 patients with stable chronic obstructive pulmonary disease (COPD) at enrolment in the national, multicen...

COPDmedicine.medical_specialtymultiple imputationbusiness.industry030503 health policy & servicesHealth PolicySAT studyPulmonary diseasemedicine.diseaseMissing datahumanitiesCOPD Italy SAT study cost description multiple imputation03 medical and health sciences0302 clinical medicineItalyInternal medicinemedicineCOPD030212 general & internal medicine0305 other medical sciencebusinesscost descriptionGlobal & Regional Health Technology Assessment: Italian; Northern Europe and Spanish
researchProduct

Multivariate data analysis and bivariate regression studies applied to comparison of two multi-elemental methods for analysing wine samples

2002

Two inductively coupled plasma mass spectrometry (ICP-MS) methods which permit multi-elemental analysis in wine samples have been compared following two strategies. First, a multivariate tool based on principal component analysis (PCA) was employed for a global (all analytes) qualitative comparison of the two methods. A single plot based on the confidence limits of the Q and T2 PCA model statistics corresponding to the ‘standard’ method results (calibration set) was used to check the comparability of the ‘candidate’ method (test samples). The residual matrix (after test matrix interpolation into the PCA model) gives qualitative information about the nature of the main errors. This approach …

ChemometricsMultivariate statisticsApplied MathematicsPrincipal component analysisStatisticsLinear regressionEconometricsBivariate analysisMissing dataLeast squaresAnalytical ChemistryMathematicsInterpolationJournal of Chemometrics
researchProduct

Missing Data

2009

In this chapter, we deal with the problem of missing data in principal component analysis (PCA) and partial least squares (PLS) methods. First, we review several statistical methods proposed in the literature for handling missing data. Both single and multiple imputation (MI) methods are studied and compared using simulated data. After this, we particularize the missing data problem for building and exploiting multivariate calibration models. Several approaches proposed in the literature are introduced and their performance compared based on several real data sets.

Computer scienceIterative methodSimulated dataPrincipal component analysisExpectation–maximization algorithmPartial least squares regressionMultivariate calibrationMissing data problemData miningcomputer.software_genreMissing datacomputer
researchProduct

Seeing Missing Values

2011

Computer scienceStatisticsImputation (statistics)Missing data
researchProduct

Real-Time Human Pose Estimation from Body-Scanned Point Clouds

2015

International audience; This paper presents a novel approach to estimate the human pose from a body-scanned point cloud. To do so, a predefined skeleton model is first initialized according to both the skeleton base point and its torso limb obtained by Principal Component Analysis (PCA). Then, the body parts are iteratively clustered and the skeleton limb fitting is performed, based on Expectation Maximization (EM). The human pose is given by the location of each skeletal node in the fitted skeleton model. Experimental results show the ability of the method to estimate the human pose from multiple point cloud video sequences representing the external surface of a scanned human body; being r…

Computer sciencebusiness.industryHuman pose estimationPoint cloudComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]TorsoMissing data3D pose estimation[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.anatomical_structure[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Expectation–maximization algorithmPrincipal component analysismedicineComputer visionPoint (geometry)Artificial intelligencebusinessskeleton modelPoseComputingMethodologies_COMPUTERGRAPHICSpoint cloud
researchProduct

Listwise Recommendation Approach with Non-negative Matrix Factorization

2018

Matrix factorization (MF) is one of the most effective categories of recommendation algorithms, which makes predictions based on the user-item rating matrix. Nowadays many studies reveal that the ultimate goal of recommendations is to predict correct rankings of these unrated items. However, most of the pioneering efforts on ranking-oriented MF predict users’ item ranking based on the original rating matrix, which fails to explicitly present users’ preference ranking on items and thus might result in some accuracy loss. In this paper, we formulate a novel listwise user-ranking probability prediction problem for recommendations, that aims to utilize a user-ranking probability matrix to predi…

Computer sciencebusiness.industrysuosittelujärjestelmätStochastic matrixRecommender systemMissing dataMachine learningcomputer.software_genreMatrix decompositionNon-negative matrix factorizationMatrix (mathematics)rankingRankingcollaborative filteringalgoritmitProbability distributionArtificial intelligencebusinesscomputer
researchProduct

Missing values in deduplication of electronic patient data

2011

Data deduplication refers to the process in which records referring to the same real-world entities are detected in datasets such that duplicated records can be eliminated. The denotation ‘record linkage’ is used here for the same problem.1 A typical application is the deduplication of medical registry data.2 3 Medical registries are institutions that collect medical and personal data in a standardized and comprehensive way. The primary aims are the creation of a pool of patients eligible for clinical or epidemiological studies and the computation of certain indices such as the incidence in order to oversee the development of diseases. The latter task in particular requires a database in wh…

Computer sciencemedia_common.quotation_subjectInferenceHealth InformaticsAmbiguityPatient dataMissing datacomputer.software_genreResearch and ApplicationsRegressionNeoplasmsStatisticsData deduplicationElectronic Health RecordsHumansData miningImputation (statistics)Medical Record LinkageRegistriescomputerRecord linkagemedia_common
researchProduct

Metal artifact reduction in x-ray computed tomography: Inpainting versus missing value

2011

A comparison of algorithms for reduction of metal artifacts in x-ray cone beam computed tomography (CBCT) is presented. In the context of algebraic reconstruction techniques (ART) several inpainting algorithms in the image domain are evaluated against missing data strategies. A GPU-based iterative framework is employed for a meaningful comparison of both. Simulation results from an extended Shepp-Logan phantom and real world dental data are given.

Cone beam computed tomographyComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONInpaintingContext (language use)Iterative reconstructionMissing dataMetal ArtifactComputer visionTomographyArtificial intelligencebusinessImage restorationComputingMethodologies_COMPUTERGRAPHICS2011 IEEE Nuclear Science Symposium Conference Record
researchProduct