Search results for "Mitogen-Activated Protein Kinase"

showing 10 items of 353 documents

Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training

2014

This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measu…

AdultMalemedicine.medical_specialtyJournal ClubPhysiologyStrength trainingMAP Kinase Signaling Systemmedicine.medical_treatmentMolecular and CellularMuscle ProteinsIsometric exerciseAscorbic AcidBiologyp38 Mitogen-Activated Protein KinasesMuscle hypertrophyIsometric ContractionInternal medicinemedicineHumansVitamin Eta315Leg pressMuscle SkeletalMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Vitamin Cta1184Vitamin EBiceps curlRibosomal Protein S6 Kinases 70-kDaResistance TrainingVitaminsAscorbic acidAdaptation PhysiologicalEndocrinologyDietary SupplementsFemale
researchProduct

Protein kinase activities associated with ribosomes of developing rat brain. Identification of eukaryotic initiation factor 2 kinases.

1986

Protein kinases associated with ribosomes in the brains of suckling (4-10 days) and adult (2 months) rats were extracted from ribosomal fraction with 0.5 M KCl. The different protein kinase activities were characterized by their ability to phosphorylate three exogenous substrates: casein, histone IIs and histone IIIs in the presence of different modulators. Ribosomal salt wash fractions contain a high casein kinase activity which was partially inhibited by heparin and stimulated by calmodulin in the presence of Ca2+, indicating the presence of casein kinase I and II and calcium/calmodulin-dependent kinases. Cyclic AMP and cyclic GMP-dependent kinases and protein kinase C (calcium/phospholip…

AgingbiologyCyclin-dependent kinase 2BrainCaseinsRats Inbred StrainsMitogen-activated protein kinase kinaseRatseIF-2 KinaseDevelopmental NeuroscienceBiochemistryCasein Kinase ICasein kinase 2 alpha 1biology.proteinAnimalsASK1Cyclin-dependent kinase 9Casein kinase 1Casein kinase 2PhosphorylationProtein KinasesRibosomesDevelopmental BiologySubcellular FractionsInternational journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
researchProduct

Lipocalin-2 Regulates Hippocampal Microglial Activation in Poststroke Depression

2021

Background and Purpose: Microglia play important role in poststroke depression (PSD), however, the exact mechanism was still unclear. The purpose of the study was to study the mechanism of microglial activation in PSD.Methods: 24 rats were randomly divided into three groups: the PSD group (n = 10), the poststroke (PS) group (n = 7), and the sham group (n = 7). Primary hippocampal microglia were isolated and cultured, and recombined LCN2 protein was used to stimulate the cultured microglia. The protein expression of Iba1, P38 MAPK and PP38 MAPK was analyzed by western blotting; the LCN2 expression was measured by RT-qPCR, the serum LCN2 level and the NO level were analyzed by ELISA.Results: …

Agingpoststroke depression (PSD)nervous systemCognitive NeuroscienceAging NeurosciencemicrogliahippocampiLipocalin-2 (Lcn2)Neurosciences. Biological psychiatry. Neuropsychiatryp38 mitogen-activated protein kinase (p38 MAPK)psychological phenomena and processesOriginal ResearchRC321-571Frontiers in Aging Neuroscience
researchProduct

Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family

2011

Fibroblast growth factor receptor 1 (FGFR1) is known to be activated by homodimerization in the presence of both the FGF agonist ligand and heparan sulfate glycosaminoglycan. FGFR1 homodimers in turn trigger a variety of downstream signaling cascades via autophosphorylation of tyrosine residues in the cytoplasmic domain of FGFR1. By means of Bioluminescence Energy Resonance Transfer (BRET) as a sign of FGFR1 homodimerization, we evaluated in HEK293T cells the effects of all known FGF agonist ligands on homodimer formation. A significant correlation between BRET(2) signaling and ERK1/2 phosphorylation was observed, leading to a further characterization of the binding and signaling properties…

AgonistMAPK/ERK pathwaymedicine.drug_classBiophysicsSettore BIO/11 - Biologia MolecolareBiologyLigandsFibroblast growth factorSettore BIO/09 - FisiologiaBiochemistrychemistry.chemical_compoundFluorescence Resonance Energy TransfermedicineHumansReceptor Fibroblast Growth Factor Type 1Molecular BiologyMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Fibroblast growth factor receptor 1HEK 293 cellsAutophosphorylationCell BiologyHeparan sulfateFibroblast growth factors FGFR1 Homodimerization BRET MAPKCell biologyFibroblast Growth Factorsstomatognathic diseasesHEK293 CellschemistrySettore BIO/14 - FarmacologiaPhosphorylationHeparitin SulfateProtein MultimerizationBiochemical and Biophysical Research Communications
researchProduct

Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling

2014

The generation of excessive amounts of reactive oxygen species (ROS) leads to cellular oxidative stress that underlies a variety of forms of hepatocyte injury and death including that from alcohol. Although ROS can induce cell damage through direct effects on cellular macromolecules, the injurious effects of ROS are mediated largely through changes in signal transduction pathways such as the mitogen-activated protein kinase c-Jun N-terminal kinase (JNK). In response to alcohol, hepatocytes have increased levels of the enzyme cytochrome P450 2E1 (CYP2E1) which generates an oxidant stress that promotes the development of alcoholic steatosis and liver injury. These effects are mediated in larg…

Alcoholic liver diseaseClinical BiochemistryReview ArticleMitogen-activated protein kinase kinasemedicine.disease_causeBiochemistryCytochrome P450 2E10302 clinical medicineMolecular Targeted TherapyMitogen-activated protein kinaseslcsh:QH301-705.5c-Jun N-terminal kinasechemistry.chemical_classificationTNF tumor necrosis factorlcsh:R5-9200303 health sciencesCell DeathCYP2E1 cytochrome P450 2E1Cytochrome P-450 CYP2E13. Good healthCell biologyPKD protein kinase DLiverJNK c-Jun N-terminal kinaseSab SH3 homology associated BTK binding protein030211 gastroenterology & hepatologySignal transductionlcsh:Medicine (General)MAP Kinase Signaling SystemAPAP acetaminophenMKK MAPK kinaseBiology03 medical and health sciencesROS reactive oxygen speciesPKC protein kinase CmedicineAnimalsHumansMAPKKK MAPK kinase kinaseProtein kinase ACell damage030304 developmental biologyReactive oxygen speciesMAP kinase kinase kinaseOrganic ChemistryJNK Mitogen-Activated Protein KinasesAlcoholic liver diseasemedicine.diseaseERK1/2 extracellular signal-regulated kinase 1/2Fatty Liverlcsh:Biology (General)chemistryOxidative stressNAFLD nonalcoholic fatty liver diseaseReactive Oxygen SpeciesMAPK mitogen-activated protein kinaseOxidative stressRedox Biology
researchProduct

Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-iun expression.

1999

Activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases is an early response of cells upon exposure to DNA-damaging agents. JNK-mediated phosphorylation of c-Jun is currently understood to stimulate the transactivating potency of AP-1 (e.g., c-Jun/c-Fos; c-Jun/ATF-2), thereby increasing the expression of AP-1 target genes. Here we show that stimulation of JNK1 activity is not a general early response of cells exposed to genotoxic agents. Treatment of NIH 3T3 cells with UV light (UV-C) as well as with methyl methanesulfonate (MMS) caused activation of JNK1 and an increase in c-Jun protein and AP-1 binding activity, whereas antineoplastic drugs such as mafosfamide, mito…

Alkylating AgentsProto-Oncogene Proteins c-junUltraviolet RaysStimulationBiologyenvironment and public healthWortmanninTransactivationchemistry.chemical_compoundMiceAnimalsPhosphatidylinositolCollagenasesProtein kinase AMolecular BiologyCell Growth and DevelopmentMitogen-Activated Protein Kinase 1Kinasec-junJNK Mitogen-Activated Protein KinasesCell Biology3T3 CellsMethyl MethanesulfonateMolecular biologyAndrostadienesEnzyme ActivationGene Expression Regulation NeoplasticTranscription Factor AP-1chemistryCalcium-Calmodulin-Dependent Protein KinasesPhosphorylationMitogen-Activated Protein KinasesWortmanninMolecular and cellular biology
researchProduct

Detection of mitochondrial electron chain carrier redox status by transhepatic light intensity during rat liver reperfusion.

2003

The aim of the study was to investigate mitochondrial electron transfer during rat liver reperfusion after cold storage and hypothermic machine perfusion. Livers from male Brown Norway rats were preserved (UW) for 10h either by cold storage (CS) or by hypothermic oxygenated perfusion extracorporal (HOPE). Transhepatic photometric analysis allowed determination of the redox status of mitochondrial cytochromes during preservation, rewarming and reperfusion. Mitochondrial electron chain carriers were inhibited at different sites with rotenone and cyanide in some experiments. reversed transcriptional polymerase chain reaction (RT-PCR) was performed after reperfusion concerning transcription of …

AnionsMaleTime FactorsCytochromeLightCold storageCaspase 3ElectronsDNA FragmentationMitochondrionGeneral Biochemistry Genetics and Molecular Biologychemistry.chemical_compoundSuperoxidesAnimalsCaspase-9CryopreservationCyanidesbiologySuperoxideCaspase 3Reverse Transcriptase Polymerase Chain ReactionTumor Necrosis Factor-alphaJNK Mitogen-Activated Protein KinasesTemperatureNADH DehydrogenaseGeneral MedicineRotenoneDNAOrgan PreservationLipid MetabolismCaspase 9MitochondriaRatsCold TemperatureOxygenLight intensitychemistryBiochemistryElectron Transport Chain Complex ProteinsLiverCaspasesReperfusionbiology.proteinCytochromesLipid PeroxidationMitogen-Activated Protein KinasesGeneral Agricultural and Biological SciencesReactive Oxygen SpeciesOxidation-ReductionCryobiology
researchProduct

A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans.

1998

The Candida albicans MKC1 gene encodes a mitogen-activated protein (MAP) kinase, which has been cloned by complementation of the lytic phenotype associated with Saccharomyces cerevisiae slt2 (mpk1) mutants. In this work, the physiological role of this MAP kinase in the pathogenic fungus C. albicans was characterized and a role for MKC1 in the biogenesis of the cell wall suggested based on the following criteria. First, C. albicans mkc1Δ/mkc1Δ strains displayed alterations in their cell surfaces under specific conditions as evidenced by scanning electron microscopy. Second, an increase in specific cell wall epitopes (O-glycosylated mannoprotein) was shown by confocal microscopy in mkc1Δ/mkc1…

Antifungal AgentsTranscription GeneticSaccharomyces cerevisiaeMutantMAP Kinase Kinase 2MAP Kinase Kinase 1ChitinSaccharomyces cerevisiaeProtein Serine-Threonine KinasesMicrobiologyGene Expression Regulation EnzymologicFungal ProteinsPseudohyphal growthCell WallGene Expression Regulation FungalCandida albicansCandida albicansDNA FungalFluorescent Antibody Technique IndirectGlucansProtein Kinase CMitogen-Activated Protein Kinase KinasesRecombination GeneticMembrane GlycoproteinsMicroscopy ConfocalbiologyKinaseProtein-Tyrosine Kinasesbiology.organism_classificationFlow Cytometrybeta-GalactosidaseCorpus albicansComplementationMicroscopy ElectronBiochemistryMitogen-activated protein kinaseCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMicroscopy Electron ScanningMitogen-Activated Protein KinasesPlasmidsMicrobiology (Reading, England)
researchProduct

Thiol antioxidants block the activation of antigen-presenting cells by contact sensitizers.

2003

Strong contact sensitizers are able to induce signal transduction mechanisms such as tyrosine phosphorylation and activation of MAP kinases in antigen-presenting cells. We studied the capacity of different antioxidants (ascorbic acid, alpha-tocopherol, pyrrolidine dithiocarbamate, N-acetylcysteine, and glutathione) to block the increase in tyrosine phosphorylation in human monocytes seen after stimulation with strong contact sensitizers. Human peripheral blood mononuclear cells were stimulated with 5-chloro-2-methylisothiazolinone plus 2-methylisothiazolinone in the presence or absence of these antioxidants. The total amount of membrane-associated phosphotyrosine in CD14+ cells was quantifi…

Antigen-Presenting CellsDermatologyPicryl ChlorideDermatitis ContactBiochemistryAntioxidantschemistry.chemical_compoundPyrrolidine dithiocarbamateHumansdendritic cellsCysteineSulfhydryl CompoundsTyrosinePhosphorylationAntigen-presenting cellMolecular BiologyCells CulturedNF-kappa BTyrosine phosphorylationCell BiologyGlutathioneAscorbic acidGlutathioneAcetylcysteineMAP kinaseschemistryBiochemistrycontact sensitizerthiol antioxidantTyrosineSignal transductionMitogen-Activated Protein KinasesmonocytesCysteineThe Journal of investigative dermatology
researchProduct

Mycobacterial antigen(s) induce anergy by altering TCR- and TCR/CD28-induced signalling events: insights into T-cell unresponsiveness in leprosy.

2009

Present study investigates the role of Mycobacterium leprae (M. leprae) antigens on TCR- and TCR/CD28-induced signalling leading to T-cell activation and further correlates these early biochemical events with T-cell anergy, as prevailed in advanced stages of leprosy. We observed that both whole cell lystae (WCL) and soluble fraction of M. leprae sonicate (MLSA) not only inhibited TCR, thapsigargin and ionomycin induced calcium fluxes by diminishing the opening of calcium channels, but also TCR- or TCR/CD28-induced proximal signalling events like phosphorylation of Zap-70 and protein kinase-C (PKC) activity. Study of TCR- and TCR/CD28-induced downstream signals revealed that M. leprae antige…

Antigens Differentiation T-LymphocyteMAP Kinase Signaling SystemT cellT-LymphocytesImmunologyReceptors Antigen T-Cellchemical and pharmacologic phenomenaBiologyLymphocyte ActivationJurkat cellsp38 Mitogen-Activated Protein Kinaseschemistry.chemical_compoundJurkat CellsCD28 AntigensAntigens CDLeprosyCalcium fluxmedicineHumansLectins C-TypeEnzyme InhibitorsPromoter Regions GeneticMolecular BiologyMycobacterium lepraeProtein Kinase CCell ProliferationClonal AnergyAntigens BacterialMitogen-Activated Protein Kinase 3ZAP-70 Protein-Tyrosine KinaseIonophoresNFATC Transcription FactorsIonomycinT-cell receptorInterleukin-2 Receptor alpha SubunitCD28hemic and immune systemsNFATbiology.organism_classificationCell biologyMycobacterium lepraemedicine.anatomical_structurechemistryGene Expression RegulationIonomycinImmunologyInterleukin-2ThapsigarginCalciumMolecular immunology
researchProduct