Search results for "Mitogen-activated protein kinases"

showing 10 items of 246 documents

Thapsigargin-stimulated MAP kinase phosphorylation via CRAC channels and PLD activation: inhibitory action of docosahexaenoic acid.

2004

AbstractThis study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca2+ stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished…

MAPK/ERK pathwayThapsigarginDocosahexaenoic AcidsBiophysicschemistry.chemical_elementCalciumBiochemistryDiglycerideschemistry.chemical_compoundJurkat CellsStructural BiologyGeneticsPhospholipase DHumansPhosphorylationMolecular BiologyProtein kinase CProtein Kinase CDiacylglycerol kinaseMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Phospholipase CChemistryKinasePhospholipase DRyanodine Receptor Calcium Release ChannelCell BiologyJurkat T-cellCell biologyEnzyme Activationenzymes and coenzymes (carbohydrates)Docosahexaenoic acidFatty Acids UnsaturatedThapsigarginlipids (amino acids peptides and proteins)CalciumMitogen-Activated Protein KinasesFEBS letters
researchProduct

Sterigmatocystin-induced DNA damage triggers cell-cycle arrest via MAPK in human neuroblastoma cells

2021

Sterigmatocystin (STE) is a common mycotoxin found in food and feed. Many studies showed that STE is genotoxic. However, up to now, the potential genotoxicity of STE on human neuronal system remains unknown. In this study, we explored the effect of STE on DNA damage and cell-cycle progression on human neuroblastoma SH-SY5Y cells exposed to various concentrations of STE (0.78, 1.56 and 3.12 µM) for 24 h. The results indicated that STE exposure induced DNA damage, as evidenced by DNA comet tails formation and increased γH2AX foci. Additionally, genotoxicity was confirmed by micronuclei (MN) analysis. Furthermore, we found that STE exposure led to cell-cycle arrest at the S and the G2/M phase.…

MAPK/ERK pathwayendocrine system0303 health sciencesCell cycle checkpointDNA damageHealth Toxicology and Mutagenesisp38 mitogen-activated protein kinases030302 biochemistry & molecular biology010501 environmental sciencesCell cycleToxicologymedicine.diseasemedicine.disease_cause01 natural sciencesCell biology03 medical and health scienceschemistry.chemical_compoundchemistryNeuroblastomamedicineGenotoxicity0105 earth and related environmental sciencesSterigmatocystinToxicology Mechanisms and Methods
researchProduct

Role of nuclear factor κB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation

2007

Activation of nuclear factor (NF) κB and mitogen-activated protein kinase (MAPK) pathways in skeletal muscle has been shown to enhance the gene expression of several enzymes that play an important role in maintaining oxidant–antioxidant homeostasis, such as mitochondrial superoxide dismutase (MnSOD) and inducible nitric oxide synthase (iNOS). While an acute bout of exercise activates NFκB and MAPK signaling and upregulates MnSOD and iNOS, administration of chemical agents that suppress reactive oxygen species (ROS) production can cause attenuation of exercise-induced MnSOD and iNOS expression. Thus, ROS generation during exercise may have duel effects: the infliction of oxidative stress an…

MAPK/ERK pathwaymedicine.medical_specialtyMAP Kinase Signaling SystemPhysiologyEndocrinology Diabetes and MetabolismBiologymedicine.disease_causeAntioxidantsPhysiology (medical)Internal medicinemedicineAnimalsHumansProtein kinase AExercisechemistry.chemical_classificationReactive oxygen speciesNutrition and DieteticsNF-kappa BSkeletal muscleGeneral MedicineNFKB1EnzymesCell biologyNitric oxide synthasemedicine.anatomical_structureEndocrinologychemistryMitogen-activated protein kinasebiology.proteinMitogen-Activated Protein KinasesOxidative stressApplied Physiology, Nutrition, and Metabolism
researchProduct

Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats

2005

Reactive oxygen or nitrogen species (RONS) are produced during exercise due, at least in part, to the activation of xanthine oxidase. When exercise is exhaustive they cause tissue damage; however, they may also act as signals inducing specific cellular adaptations to exercise. We have tested this hypothesis by studying the effects of allopurinol-induced inhibition of RONS production on cell signalling pathways in rats submitted to exhaustive exercise. Exercise caused an activation of mitogen-activated protein kinases (MAPKs: p38, ERK 1 and ERK 2), which in turn activated nuclear factor κB (NF-κB) in rat gastrocnemius muscle. This up-regulated the expression of important enzymes associated w…

MAPK/ERK pathwaymedicine.medical_specialtyPhysiologyKinasep38 mitogen-activated protein kinasesAllopurinolBiologymedicine.disease_causebiology.organism_classificationCell biologySuperoxide dismutasechemistry.chemical_compoundEndocrinologychemistryEnosInternal medicinemedicinebiology.proteinXanthine oxidaseOxidative stressmedicine.drugThe Journal of Physiology
researchProduct

Activation of Cardiac c-Jun NH 2 -Terminal Kinases and p38-Mitogen–Activated Protein Kinases With Abrupt Changes in Hemodynamic Load

2001

Abstract —The role of mitogen-activated protein kinase (MAPK) pathways as signal transduction intermediates of hemodynamic stress leading to cardiac hypertrophy in the adult heart is not fully established. In a rat model of pressure-overload hypertrophy, we examined whether activation of MAPK pathways, namely, the extracellular signal–regulated protein kinase (ERK), c-Jun NH 2 -terminal kinase (JNK), and the p38-MAPK pathways, occurs during rapid changes in hemodynamic load in vivo. A slight activation of ERK2 and marked increases in JNK1 and p38-MAPK activities were observed 30 minutes after aortic banding. The increase in p38-MAPK activity was accompanied by an increase in the phosphoryl…

MAPK/ERK pathwaymedicine.medical_specialtyProto-Oncogene Proteins c-junp38 mitogen-activated protein kinasesp38 Mitogen-Activated Protein KinasesVentricular Function LeftStress PhysiologicalInternal medicineInternal MedicinemedicineAnimalsASK1PhosphorylationRats WistarCyclic AMP Response Element-Binding ProteinProtein kinase AProtein kinase CMAPK14Activating Transcription Factor 2biologyKinaseMyocardiumJNK Mitogen-Activated Protein KinasesRatsCell biologyEnzyme ActivationTranscription Factor AP-1Disease Models AnimalEndocrinologyMitogen-activated protein kinasebiology.proteinFemaleMitogen-Activated Protein KinasesTranscription FactorsHypertension
researchProduct

Apoptosis induced in vascular smooth muscle cells by oxidative stress is partly prevented by pretreatment with CGRP.

2003

MAPK/ERK pathwaymedicine.medical_specialtyVascular smooth muscleMitogen-Activated Protein Kinase 3Calcitonin Gene-Related PeptideNeuropeptideApoptosisCalcitonin gene-related peptidemedicine.disease_causeGeneral Biochemistry Genetics and Molecular BiologyMuscle Smooth VascularHistory and Philosophy of ScienceInternal medicinemedicine.arterymedicineAnimalsRats WistarAortaCells CulturedMitogen-Activated Protein Kinase 1AortaMitogen-Activated Protein Kinase 3ChemistryGeneral NeuroscienceRatsEnzyme ActivationOxidative StressEndocrinologyApoptosisMitogen-Activated Protein KinasesOxidative stressAnnals of the New York Academy of Sciences
researchProduct

Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution

2010

Stimulation of MAP kinase signal transduction pathway by various stressful stimuli was investigated in the marine bivalve Mytilus galloprovincialis. Analyses were performed in animals exposed in laboratory to selected pollutants and in mussels collected in winter and summer along the eastern Adriatic coast (Croatia). Effects of oxidative stress, induced by tributyltin, hydrogen peroxide and water soluble fraction of diesel fuel on the activation/phosphorylation of the three Mitogen-Activated Protein Kinases (MAPKs) p38, JNK and ERK using a newly developed ELISA procedure were evaluated. MAP kinase activation was analyzed 1 h after exposure of mussels to chemical agents, and after recovery p…

MAPK/ERK pathwaymussel Mytilus galloprovincialisMAP Kinase Kinase 4MAP Kinase Signaling SystemHealth Toxicology and Mutagenesisp38 mitogen-activated protein kinasesEnvironmental pollutionEnzyme-Linked Immunosorbent Assaypollution ; biomarker ; MAP kinase ; mussel ; Mytilus galloprovincialis ; tributyltin ; diesel oil ; hydrogen peroxide010501 environmental sciencesAquatic Science01 natural sciencesp38 Mitogen-Activated Protein Kinases03 medical and health scienceschemistry.chemical_compoundAnimals14. Life underwaterExtracellular Signal-Regulated MAP Kinases030304 developmental biology0105 earth and related environmental sciencesMytilus0303 health sciencesbiologyKinaseMusselHydrogen Peroxidebiology.organism_classificationMytilusCell biologyEnzyme Activationchemistry13. Climate actionEnvironmental chemistryMitogen-activated protein kinaseTributyltinbiology.proteinbiomarkerMAP kinaseMitogen-Activated Protein KinasesTrialkyltin Compoundsenvironmental pollutionBiomarkersGasolineWater Pollutants Chemical
researchProduct

P38 MAP Kinase Signaling Is Required for the Conversion of CD4+CD25− T Cells into iTreg

2008

CD4+CD25+ regulatory T cells (Treg) are important mediators of immune tolerance. A subset of Treg can be generated in the periphery by TGF-beta dependent conversion of conventional CD4+CD25− T cells into induced Treg (iTreg). In chronic viral infection or malignancy, such induced iTreg, which limit the depletion of aberrant or infected cells, may be of pathogenic relevance. To identify potential targets for therapeutic intervention, we investigated the TGF-beta signaling in Treg. In contrast to conventional CD4+ T cells, Treg exhibited marked activation of the p38 MAP kinase pathway. Inhibition of p38 MAP kinase activity prevented the TGF-beta-dependent conversion of CD4+CD25− T cells into …

MAPK/ERK pathwayp38 mitogen-activated protein kinasesImmunologyBlotting WesternImmunology/Immunomodulationlcsh:MedicineImmunology/Autoimmunitychemical and pharmacologic phenomenaBiologyT-Lymphocytes Regulatoryp38 Mitogen-Activated Protein KinasesImmune toleranceImmunology/Leukocyte Signaling and Gene ExpressionMiceAnimalsIL-2 receptorlcsh:ScienceMultidisciplinarylcsh:RInterleukin-2 Receptor alpha SubunitFOXP3hemic and immune systemsFlow CytometryCell biologyMitogen-activated protein kinaseCD4 Antigensbiology.proteinPhosphorylationlcsh:QSignal transductionResearch ArticleSignal TransductionPLoS ONE
researchProduct

Activation of MAP kinase p38 is critical for the cell-cycle–controlled suppressor function of regulatory T cells

2007

AbstractRegulatory T cells play an essential role in the control of self-tolerance and processes of adaptive immunity. Tolerogenic IL-10–modulated human dendritic cells (IL-10DCs) induce anergic T cells with strong suppressive properties (iTregs) that inhibit the activation of effector T cells. In this study, we evaluated the interaction between cell-cycle regulation and intracellular signaling in these iTregs. Analysis of signal transduction events revealed a down-regulation of the mitogen-activated protein kinases (MAPKs) Jun N-terminal kinase (JNK) and a nonactivation of extracellular-signal–regulated kinase (ERK) in contrast to a marked activation of p38 MAPK and the p38 effector MAPK-a…

MAPK/ERK pathwayp38 mitogen-activated protein kinasesImmunologyIn Vitro TechniquesProtein Serine-Threonine KinasesBiologyT-Lymphocytes Regulatoryp38 Mitogen-Activated Protein KinasesBiochemistryAldesleukinHumansProtein kinase AMitogen-Activated Protein Kinase KinasesKinaseCell CycleIntracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesCell BiologyHematologyAcquired immune systemInterleukin-10Cell biologyMitogen-activated protein kinasebiology.proteinSignal transductionCyclin-Dependent Kinase Inhibitor p27Blood
researchProduct

Evolution of osmosensing signal transduction in Metazoa: stress-activated protein kinases p38 and JNK.

2001

Sponges (Porifera) represent the most basal branch of the Metazoa alive today. We show that two central stress-activated protein kinases involved in the osmosensing pathway, p38 mitogen-activated protein kinase (MAPK) and JNK, can complement for the ancestral MAPK Hog1 in the yeast Saccharomyces cerevisiae. S. cerevisiae mutants lacking Hog1 (hog1-Delta 1) have been complemented with the sponge SDJNK and SDp38 genes. Western blotting has revealed that, after transformation, the hog1-Delta 1+ SDJNK(sense) and hog1-Delta 1+ SDp38(sense) clones express the sponge proteins. Functional studies have demonstrated that the complemented clones grow under hyperosmotic conditions (0.6 M NaCl). Further…

MAPK/ERK pathwayxHistologySaccharomyces cerevisiae ProteinsMAP Kinase Kinase 4p38 mitogen-activated protein kinasesSaccharomyces cerevisiaeMutantSaccharomyces cerevisiaeSodium Chloridep38 Mitogen-Activated Protein KinasesPathology and Forensic MedicineTransformation GeneticOsmotic PressureAnimalsMitogen-Activated Protein Kinase 8PhosphorylationProtein kinase APhylogenyMitogen-Activated Protein Kinase KinasesbiologyKinaseJNK Mitogen-Activated Protein KinasesCell BiologyWater-Electrolyte Balancebiology.organism_classificationCell biologyPoriferaPhosphorylationSignal transductionMitogen-Activated Protein KinasesSignal TransductionCell and tissue research
researchProduct