Search results for "Modelling and simulation"
showing 10 items of 97 documents
A discrete mathematical model for addictive buying: Predicting the affected population evolution
2011
This paper deals with the construction of a discrete mathematical model for addictive buying. Firstly, identifications of consumers buying behavior are performed by using multivariate statistical techniques based on real data bases and sociological approaches. Then the population is divided into appropriate groups according to the level of overbuying and a discrete compartmental model is constructed. The future short term addicted population is computed assuming several future economic scenarios. © 2010 Elsevier Ltd.
On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the Tritronquée solution to the…
2008
We argue that the critical behavior near the point of “gradient catastrophe” of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation \(i\epsilon \varPsi _{t}+\frac{\epsilon^{2}}{2}\varPsi _{xx}+|\varPsi |^{2}\varPsi =0\) , e ≪1, with analytic initial data of the form \(\varPsi (x,0;\epsilon)=A(x)e^{\frac{i}{\epsilon}S(x)}\) is approximately described by a particular solution to the Painleve-I equation.
Hygro-elasto-plastic model for planar orthotropic material
2015
An in-plane elasto-plastic material model and a hygroexpansivity-shrinkage model for paper and board are introduced in this paper. The input parameters for both models are fiber orientation anisotropy and dry solids content. These two models, based on experimental results, could be used in an analytical approach to estimate, for example, plastic strain and shrinkage in simple one-dimensional cases, but for studies of the combined and more complicated effects of hygro-elasto-plastic behavior, a numerical finite element model was constructed. The finite element approach also offered possibilities for studying different structural variations of an orthotropic sheet as well as buckling behavior…
Transportation-cost inequality on path spaces with uniform distance
2008
Abstract Let M be a complete Riemannian manifold and μ the distribution of the diffusion process generated by 1 2 ( Δ + Z ) where Z is a C 1 -vector field. When Ric − ∇ Z is bounded below and Z has, for instance, linear growth, the transportation-cost inequality with respect to the uniform distance is established for μ on the path space over M . A simple example is given to show the optimality of the condition.
A study of the material in the ATLAS inner detector using secondary hadronic interactions
2011
The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from ~ 200μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.
Study of the material of the ATLAS inner detector for Run 2 of the LHC
2017
The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic in…
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
2010
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV…
On the effect of damping on dispersion curves in plates
2013
AbstractThis paper presents a study on quantitative prediction and understanding of time-harmonic wave characteristics in damped plates. Material dissipation is modelled by using complex-valued velocities of free dilatation and shear waves in an unbounded volume. As a numerical example, solution of the classical Rayleigh–Lamb problem for a viscoelastic plate is presented to illustrate and discuss the role of dissipation in the cut-off phenomenon and in the phenomenon of veering for dispersion curves. These phenomena are explained in more detail considering a simple model, which allows accurate asymptotic analysis of the perturbation of dispersion curves in the regions of cut-off and veering.
Nonlinear nonviscous hydrodynamical models for charge transport in the framework of extended thermodynamic methods
2002
This paper develops a procedure, based on methods of extended thermodynamics, to design nonlinear hydrodynamical models for charge transport in metals or in semiconductors, neglecting viscous phenomena. Models obtained in this way allow the study of the motion of electric charges in the presence of arbitrary external electric fields and may be useful when one wishes to study phenomena in a neighborhood of a stationary nonequilibrium process: indeed, the drift velocity of the charge gas with respect to the crystal lattice is not regarded as a small parameter.
Non-equilibrium thermodynamics analysis of rotating counterflow superfluid turbulence
2010
In two previous papers two evolution equations for the vortex line density $L$, proposed by Vinen, were generalized to rotating superfluid turbulence and compared with each other. Here, the already generalized alternative Vinen equation is extended to the case in which counterflow and rotation are not collinear. Then, the obtained equation is considered from the viewpoint of non-equilibrium thermodynamics. According with this formalism, the compatibility between this evolution equation for $L$ and that one for the velocity of the superfluid component is studied. The compatibility condition requires the presence of a new term dependent on the anisotropy of the tangle, which indicates how the…