Search results for "Molecular Docking Simulation"
showing 10 items of 151 documents
Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity
2019
Abstract Permethrin is a synthetic pyrethroid extensively used as anti-woodworm agent and for indoor and outdoor pest control. The main route of human exposure is through fruit, vegetable and milk intake. Low dosage exposure to permethrin during neonatal brain development (from postnatal day 6 to postnatal day 21) leads to dopamine decrease in rat striatum nucleus, oxidative stress and behavioural changes linked to the development of Parkinson's like neurodegeneration later in life. The aim of this study was to evaluate the expression of genes involved in the dopaminergic pathway and epigenetic regulatory mechanisms in adolescent rats treated with permethrin during neonatal brain developmen…
Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure–Activity Rela…
2021
Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorabl…
Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir
2015
In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.e. finding second or further medical uses for known-medications) which can substantially improve the success at clinical trials and the innovation in the pharmac…
Organophosphate ester tri-o-cresyl phosphate interacts with estrogen receptor α in MCF-7 breast cancer cells promoting cancer growth
2020
Plastic in the ocean degrades to microplastic, thereby enhancing the leaching of incorporated plasticizers due to the increased particle surface. The uptake of microplastic-derived plasticizers by marine animals and the subsequent entry in the food chain raises concerns for adverse health effects in human beings. Frequently used plasticizers as the organophosphate ester tri-o-cresyl phosphate (TOCP) are known to affect the male reproductive system. However, the overall endocrine potential of TOCP and the underlying molecular mechanisms remain elusive as yet. In this study, we investigated the molecular effects of TOCP on estrogen receptor α (ERα)-transfected HEK-ESR1 cells and the human bre…
Distant Homology Modeling of LCAT and Its Validation through In Silico Targeting and In Vitro and In Vivo Assays
2013
LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallog…
Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N-Acylethanolamine-Hydrolyzing Acid Ami…
2021
Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure–activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo…
In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection
2020
COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used for Ebola infection). This work proposes a repurposing process using a database containing approximately 8000 known drugs in synergy structure- and ligand-based studies by means of the molecular docking and descriptor-based protocol. The proposed in silico findings identified new potential SARS CoV-2 main protease (MPRO) inhibitors that fit in the catalytic binding site of SARS CoV-2 MPRO. Several sel…
Synthesis, photophysical properties and structures of organotin-Schiff bases utilizing aromatic amino acid from the chiral pool and evaluation of the…
2017
Abstract Five new organotin(IV) complexes of compositions [Me 2 SnL 1 ] ( 1 ), [Me 2 SnL 2 ] n ( 2 ), [Me 2 SnL 3 ] ( 3 ), [Ph 3 SnL 1 H] n ( 4 ) and [Ph 3 SnL 3 H] ( 5 ) (where L 1 = (2 S )-2-(( E )-(( Z )-4-hydroxypent-3-en-2-ylidene)amino)-3-(1 H -indol-3-yl)propanoate, L 2 = (2 S )-( E )-2-((2-hydroxybenzylidene)amino)-3-(1 H -indol-3-yl)propanoate and L 3 = (2 S )-( E )-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1 H -indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1 – 4 were determined. For the dimethyltin derivative 2 , a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbony…
Phosphonic Acid Analogs of Fluorophenylalanines as Inhibitors of Human and Porcine Aminopeptidases N: Validation of the Importance of the Substitutio…
2020
International audience; A library of phosphonic acid analogs of phenylalanine substituted with fluorine, chlorine and trifluoromethyl moieties on the aromatic ring was synthesized and evaluated for inhibitory activity against human (hAPN) and porcine (pAPN) aminopeptidases. Fluorogenic screening indicated that these analogs are micromolar or submicromolar inhibitors, both enzymes being more active against hAPN. In order to better understand the mode of the action of the most active compounds, molecular modeling was used. It confirmed that aminophosphonic portion of the enzyme is bound nearly identically in the case of all the studied compounds, whereas the difference in activity results fro…
Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies
2014
NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis…