Search results for "Molecular Docking Simulation"

showing 10 items of 151 documents

Evaluating ancient Egyptian prescriptions today: Anti-inflammatory activity of Ziziphus spina-christi.

2015

Abstract Background Ziziphus spina-christi (L.) Desf. (Christ's Thorn Jujube) is a wild tree today found in Jordan, Israel, Egypt, and some parts of Africa, which was already in use as a medicinal plant in Ancient Egypt. In ancient Egyptian prescriptions, it was used in remedies against swellings, pain, and heat, and thus should have anti-inflammatory effects. Nowadays, Z. spina-christi, is used in Egypt (by Bedouins, and Nubians), the Arabian Peninsula, Jordan, Iraq, and Morocco against a wide range of illnesses, most of them associated with inflammation. Pharmacological research undertaken to date suggests that it possesses anti-inflammatory, hypoglycemic, hypotensive and anti-microbial e…

0301 basic medicinemedicine.drug_classLeupeptinsIn silicoHerbal MedicineEgypt AncientAnti-Inflammatory AgentsPharmaceutical SciencePlant RootsAnti-inflammatory03 medical and health sciencesCell Line TumorDrug DiscoveryMedicineGallocatechinBioassayHumansElectrophoretic mobility shift assayHistory AncientPharmacologyZiziphus spina-christiInflammationPlants MedicinalbiologyTraditional medicinePlant Stemsbusiness.industryPlant ExtractsTranscription Factor RelAZiziphusZiziphusbiology.organism_classificationMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicineDocking (molecular)SeedsMolecular MedicinebusinessPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection

2021

Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes i…

0301 basic medicinemedicine.medical_treatmentPharmacologyVirus ReplicationBiochemistrychemistry.chemical_compoundChemokine CCL2Coronavirus 3C ProteasesResearch ArticlesToll-like receptorbiologyNF-kappa BFamotidineMolecular Docking SimulationCytokine release syndromeCytokinemedicine.symptomSignal transductionHistaminemedicine.drugProtein BindingSignal TransductionHistamine AntagonistsInflammation03 medical and health sciencesToll-like receptormedicineHumansInterleukin 6Molecular BiologyBinding Sites030102 biochemistry & molecular biologybusiness.industryInterleukin-6SARS-CoV-2Cell Biologymedicine.diseasehistamineToll-Like Receptor 3Famotidine030104 developmental biologychemistryA549 CellsSARS-CoV2biology.proteinanti-viral signalingInterferon Regulatory Factor-3Caco-2 CellsbusinessHeLa Cells
researchProduct

Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors

2021

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with “secondary” targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirabl…

0301 basic medicineon/off-targetsProtein ConformationComputer sciencemedicine.medical_treatmentHIV InfectionsLigands01 natural sciencesHIV ProteaseHIV-1 proteaseCatalytic DomainDrug DiscoveryBiology (General)DRUDITSpectroscopyMolecular StructurebiologyGeneral MedicineResearch processSmall moleculeComputer Science ApplicationsMolecular Docking SimulationChemistryligand-structure basedQH301-705.5NCI databaseComputational biologyArticleCatalysisInorganic ChemistryStructure-Activity Relationshipmolecular descriptors03 medical and health sciencesHIV-1 proteasemedicineHumansComputer SimulationPhysical and Theoretical ChemistryQD1-999Molecular BiologyVirtual screeningProteaseOrganic ChemistryHIV Protease Inhibitorsmolecular dockingvirtual screening0104 chemical sciences010404 medicinal & biomolecular chemistry030104 developmental biologyDrug DesignHIV-1biology.proteinInternational Journal of Molecular Sciences
researchProduct

Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates

2018

A family of dipeptidyl enoates has been prepared and tested against the parasitic cysteine proteases rhodesain, cruzain and falcipain-2 related to sleeping sickness, Chagas disease and malaria, respectively. They have also been tested against human cathepsins B and L1 for selectivity. Dipeptidyl enoates resulted to be irreversible inhibitors of these enzymes. Some of the members of the family are very potent inhibitors of parasitic cysteine proteases displaying k2nd (M−1s−1) values of seven orders of magnitude. In vivo antiprotozoal testing was also performed. Inhibitors exhibited IC50 values in the micromolar range against Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and ev…

0301 basic medicinesleeping sicknessClinical BiochemistryPharmaceutical Science01 natural sciencesBiochemistryCathepsin BinhibitorsDrug Discoverychemistry.chemical_classificationbiologyChemistryDipeptidesHep G2 CellsMolecular Docking SimulationCysteine EndopeptidasesBiochemistryAntiprotozoalMolecular MedicineChagas diseaseProteasesCell Survivalmedicine.drug_classPlasmodium falciparumTrypanosoma brucei bruceimalariaAntiprotozoal AgentsCysteine Proteinase InhibitorsTrypanosoma bruceicysteine proteasesInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesparasitic diseasesmedicineHumansTrypanosoma cruziMolecular Biologychagas diseaseBinding Sites010405 organic chemistryOrganic ChemistryPlasmodium falciparumbiology.organism_classificationmedicine.diseaseProtein Structure Tertiary0104 chemical sciences030104 developmental biologyEnzymeCysteineBioorganic & Medicinal Chemistry
researchProduct

Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells

2019

Abstract Background A major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types. Purpose Identification of novel molecules that overcome MDR by targeting ABC-transporters. Methods Resazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin …

ATP Binding Cassette Transporter Subfamily BAbcg2Pharmaceutical Science03 medical and health sciences0302 clinical medicineCell Line TumorDrug DiscoverymedicineHumansCytotoxic T cell030304 developmental biologyP-glycoproteinPharmacology0303 health sciencesbiologyChemistryCancermedicine.diseaseDrug Resistance MultipleNeoplasm ProteinsMolecular Docking SimulationMultiple drug resistanceComplementary and alternative medicineDrug Resistance NeoplasmApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchMolecular MedicineEffluxSesquiterpenesPhytomedicine
researchProduct

Nitensidine A, a guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1.

2014

The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibi…

ATP Binding Cassette Transporter Subfamily BLeukemia T-CellStereochemistryATPasePharmaceutical ScienceATP-binding cassette transporterGuanidineschemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoveryHumansheterocyclic compoundsBinding siteGuanidineCytotoxicityP-glycoproteinPharmacologyAdenosine TriphosphatasesbiologyPlant ExtractsAlkaloidFabaceaeFluoresceinsAntineoplastic Agents PhytogenicDrug Resistance MultipleMolecular Docking SimulationComplementary and alternative medicinechemistryBiochemistryVerapamilDrug Resistance Neoplasmbiology.proteinMonoterpenesMolecular MedicineATP-Binding Cassette TransportersKaempferolPhytotherapyPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

2015

Abstract Background: The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Material and methods: Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by res…

ATP Binding Cassette Transporter Subfamily BReserpineAngiogenesisPharmaceutical SciencePharmacologyBiologyRauwolfiaGene Knockout TechniquesCell Line TumorDrug DiscoverymedicineATP Binding Cassette Transporter Subfamily G Member 2HumansCytotoxicityPharmacologyWnt signaling pathwayReserpineAntineoplastic Agents PhytogenicDrug Resistance MultipleNeoplasm ProteinsErbB ReceptorsMolecular Docking SimulationComplementary and alternative medicineCell cultureApoptosisDoxorubicinDrug Resistance NeoplasmCancer cellMolecular MedicineATP-Binding Cassette TransportersErlotinibTumor Suppressor Protein p53medicine.drugPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Cytotoxicity of cucurbitacin E from Citrullus colocynthis against multidrug-resistant cancer cells

2019

Abstract Background Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad. Purpose This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). Methods Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towar…

Abcg2Drug ResistancePharmaceutical ScienceATP-binding cassette transporterMicroarraySubfamily Gchemistry.chemical_compoundGene Knockout Techniques0302 clinical medicineEpidermal growth factorPhytogenicDrug DiscoveryATP Binding Cassette Transporter Subfamily G Member 2Cancer0303 health sciencesTumorLeukemiabiologyChemistryABCB5TransfectionCell cycleNeoplasm ProteinsGene Expression Regulation NeoplasticErbB ReceptorsMolecular Docking SimulationSubfamily B030220 oncology & carcinogenesisMolecular MedicineCitrullus colocynthiMember 2Member 1ATP Binding Cassette Transporter Subfamily BATP Binding Cassette TransporterAntineoplastic AgentsCell Line03 medical and health sciencesCell Line TumorHumansATP Binding Cassette Transporter Subfamily B Member 1030304 developmental biologyCucurbitacin EPharmacologyNeoplasticTraditional herbal medicineCancer; Citrullus colocynthis; Drug resistance; Microarray; Traditional herbal medicine; ATP Binding Cassette Transporter Subfamily B; ATP Binding Cassette Transporter Subfamily B Member 1; ATP Binding Cassette Transporter Subfamily G Member 2; Antineoplastic Agents Phytogenic; Cell Line Tumor; Citrullus colocynthis; Doxorubicin; Drug Resistance Neoplasm; ErbB Receptors; Gene Expression Regulation Neoplastic; Gene Knockout Techniques; Humans; Leukemia; Molecular Docking Simulation; Neoplasm Proteins; Triterpenes; Tumor Suppressor Protein p53Antineoplastic Agents PhytogenicTriterpenesComplementary and alternative medicineGene Expression RegulationDrug Resistance NeoplasmDoxorubicinCancer cellbiology.proteinCancer researchNeoplasmCitrullus colocynthisTumor Suppressor Protein p53
researchProduct

Identification of a new series of amides as non-covalent proteasome inhibitors

2014

Proteasome inhibition has emerged as an important therapeutic strategy for the treatment of multiple myeloma (MM) and some forms of lymphoma, with potential application in other types of cancers. 20S proteasome consists of three different catalytic activities known as chymotrypsin-like (ChT-L), trypsin-like (T-L), and, post-glutamyl peptide hydrolyzing (PGPH) or caspase-like (C-L), which are located respectively on the β5, β2, and β1 subunits of each heptameric β rings. Currently a wide number of covalent proteasome inhibitors are reported in literature; however, the less widely investigated non-covalent inhibitors might be a promising alternative to employ in therapy, because of the lack o…

AmideMagnetic Resonance SpectroscopyStereochemistryProtein subunitPeptideMolecular Docking SimulationDrug DiscoverymedicineHumansProteasome inhibitorDocking studiesMultiple myelomaPharmacologychemistry.chemical_classificationOrganic ChemistryGeneral Medicinemedicine.diseaseAmidesYeastMolecular Docking SimulationchemistryProteasomeBiochemistryNon-covalent inhibitorDocking (molecular)Covalent bondProteasome Inhibitors
researchProduct

Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening

2013

The design through energy-based pharmacophore virtual screening has led to aminocyanopyridine derivatives as efficacious new inhibitors of Hsp90. The synthesized compounds showed a good affinity for the Hsp90 ATP binding site in the competitive binding assay. Moreover, they showed an excellent antiproliferative activity against a large number of human tumor cell lines. Further biological studies on the derivative with the higher EC50 confirmed its specific influence on the cellular pathways involving Hsp90.

AminopyridinesInhibitory Concentration 50Structure-Activity RelationshipUser-Computer InterfaceHeat shock proteinCell Line TumorSettore BIO/10 - BiochimicaDrug DiscoveryHumansHSP90 Heat-Shock ProteinsBinding siteVirtual screeningheat shock protein 90 inhibitors energy-based pharmacophore virtual screening cell cycle antiproliferative activitybiologyChemistryHsp90Combinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaHuman tumorMolecular Docking SimulationCell cultureDrug DesignEnergy basedbiology.proteinMolecular MedicinePharmacophoreDrug Screening Assays Antitumor
researchProduct