Search results for "Momentum transfer"

showing 4 items of 134 documents

Comparing proton momentum distributions in A = 2 and 3 nuclei via 2H 3H and 3He (e,e′p) measurements

2019

We report the first measurement of the $(e,e'p)$ reaction cross-section ratios for Helium-3 ($^3$He), Tritium ($^3$H), and Deuterium ($d$). The measurement covered a missing momentum range of $40 \le p_{miss} \le 550$ MeV$/c$, at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV$/c$)$^2$) and $x_B>1$, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for $^3$He$/d$ and $^3$H$/d$ extend to just above the typical nucleon Fermi-momentum ($k_F \approx 250$ …

production [pi]Nuclear and High Energy Physicsdata analysis methodPhotonNuclear TheoryNuclear TheoryinterferenceFOS: Physical sciencesElectronImpulse (physics)Inelastic scattering01 natural sciencesxperimental results | Jefferson Lab | electron p: scattering | parity: violation | inelastic scattering | structure function | interference | photon | Z0 | pi: production | spin: asymmetry | data analysis methodNuclear Theory (nucl-th)structure function0103 physical sciencesZ0Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsMomentum transferphotoninelastic scatteringscattering [electron p]Eikonal approximationNATURAL SCIENCES. Physics.lcsh:QC1-999PRIRODNE ZNANOSTI. Fizika.Deuteriumxperimental resultsHigh Energy Physics::Experimentviolation [parity]Atomic physicsNucleonasymmetry [spin]lcsh:PhysicsJefferson LabPhysics Letters B
researchProduct

The OLYMPUS Experiment

2014

Nuclear instruments & methods in physics research / A 741, 1 - 17 (2014). doi:10.1016/j.nima.2013.12.035

two-photon [exchange]Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronluminosity: monitoringRecoil4-MOMENTUM TRANSFERSNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear ExperimentPhysicsElastic scatteringLuminosity (scattering theory)ELECTROMAGNETIC FORM-FACTORSInstrumentation and Detectors (physics.ins-det)elastic scattering [cross section]positron p: elastic scatteringAntimatterdrift chamberelastic scattering [electron p]target [hydrogen]proportional chamberCROSS-SECTIONNuclear and High Energy PhysicsELECTRON-PROTONDESY DORIS StorFOS: Physical sciencesmonitoring [luminosity]time-of-flight530electron p: elastic scatteringNuclear physicsCross section (physics)RATIO(GEV/C)(2)p: form factor: ratiocalorimeterddc:530cross section: elastic scatteringactivity reporthydrogen: targetexchange: two-photonScatteringPOSITRONSDESYelastic scattering [positron p]magnetic spectrometerELECTROMAGNETIC FORM-FACTORS; PROTON ELASTIC-SCATTERING; 4-MOMENTUM TRANSFERS; ELECTRON-PROTON; CROSS-SECTION; RATIO; (GEV/C)(2); POSITRONSform factor: ratio [p]gas electron multiplierPhysics::Accelerator PhysicsPROTON ELASTIC-SCATTERINGHigh Energy Physics::Experiment
researchProduct

Strain hardening in liquid-particle suspensions

2005

The behavior of a liquid-particle suspension induced to sheared motion was analyzed by numerical simulations. When the velocity (strain) of the suspension began to increase, its viscosity first stayed almost constant, but increased then rapidly to a clearly higher level. This increase in viscosity is shown to be related to formation of clusters of suspended particles. Clusters are shown to increase the viscosity by enhanced momentum transfer though clustered particles. This is the mechanism behind the strain-hardening phenomenon observed in small-strain experiments on liquid-particle suspensions.

work hardeningMaterials scienceStrain (chemistry)numerical analysisMomentum transferSuspended particlesStrain hardening exponentshearSuspension (chemistry)Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsViscosityChemical physicsviscosityParticlesuspensionsshear propertiesPhysical review E
researchProduct

Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T.

2019

Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c2, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c2 by looking for electronic recoils induced by the Migdal effect and bremsstrahlung us…

xenon: targetPhysics - Instrumentation and Detectorsdark matter: interactionelastic scatteringGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonIonizationexcited state[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentLight dark matterElastic scatteringPhysicsxenon: liquidatommomentum transferMomentum transferBremsstrahlungInstrumentation and Detectors (physics.ins-det)photon: bremsstrahlungS030DN5Weakly interacting massive particlesExcited stateAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterLight Dark Matter Direct search Liquid Xenon TPCFOS: Physical sciencesS030DI5chemistry.chemical_elementNuclear physicsParticle dark matterrecoilionization0103 physical sciencesDark matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsscintillation counterS030DP5010308 nuclear & particles physicsdown: masssensitivityDark matter Particle dark matter Weakly interacting massive particles* Automatic Keywords *chemistryElementary Particles and Fieldsbremsstrahlung: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Physical review letters
researchProduct