Search results for "Monolayer"
showing 10 items of 584 documents
A new liquid surface neutron reflectometer and its application to the study of DPPC in a monolayer at the air/water interface
1991
A constant wavelength neutron reflectometer is described. Using this reflectometer, the neutron reflectivities from phosphatidylcholine monolayers in the highly condensed LC phase on ultra pure H2O and D2O have been measured on a Wilhelmy film balance. The neutron reflectivities have been carefully compared with those obtained by the X-ray method applied to the same monolayer under similar conditions. A new approach to analyzing a combined set of data composed of X-ray and neutron reflectivities has been used. From the analysis it is concluded that despite their limited qz range neutron reflectivities are as essential as X-ray reflectivities for the unique determination of the monolayer str…
Control of CaCO3 Crystallization by Demixing of Monolayers
2006
In this paper we describe how to template a demixed monolayer into a spatially patterned inorganic replica. For this purpose a new amphiphilic monomer was synthesized which can be polymerized both in solution and in the monolayer of a Langmuir-Blodgett (LB) trough. Since it inhibits the crystallization of CaCO3, it can be used--in combination with stearic acid (nucleation-promotor)--to control CaCO3 crystals formed under the monolayer. Investigations of the two-component monolayer (Langmuir isotherms and AFM measurements of transferred films) show--in the biphasic region--demixing in solid analogue stearic acid domains and the liquid analogue phase of the monomer. Crystallization of CaCO3 s…
2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces
2015
AbstractWe investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For thi…
Protein-lipid interactions at the air-water interface.
2010
International audience; Protein−lipid interactions play an important role in a variety of fields, for example in pharmaceutical research, biosensing, or food science. However, the underlying fundamental processes that govern the interplay of lipids and proteins are often very complex and are therefore studied using model systems. Here, Langmuir monolayers were used to probe the interaction of a model protein with lipid films at the air−water interface. The protein β-lactoglobulin (βlg) is the major component in bovine milk serum, where it coexists with the milk fat globular membrane. During homogenization of milk, βlg adsorbs to the interface of lipid fat globules and stabilizes the oil-in-…
Competition between surface reaction and diffusion of gold deposited onto ZrTe3
2003
Abstract Surface reaction and diffusion of gold, deposited onto the (0 0 1) ZrTe 3 van der Waals (vdW) surface, is studied by transmission electron and scanning tunneling microscopy. It is shown that both processes compete at temperatures as low as room temperature. In case of diffusion the deposited gold mostly disappears from the surface and intercalates into the vdW gaps of the substrate. Residual unreacted gold agglomerates are rather mobile and are often displaced by the scanning tip along the [1 0 0] direction of the substrate. In case of reaction, which usually takes place at somewhat higher substrate temperatures, grains of Zr 3 Te 2 , AuTe 2 and/or Au 2 Te 3 are formed. Contrary to…
Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems
2013
Item does not contain fulltext The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanopa…
Synthesis, Characterization and Sorption Capacity Examination for a Novel Hydrogel Composite Based on Gellan Gum and Graphene Oxide (GG/GO)
2020
A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.3 higher than that of pure GG. The GG/GO composite exhibits a maximum sorption capacity of 272.57 mg/g at a pH of Zn (II) initial solution of 6. Generally, the sorption capacity of the sorbents is approximately 1.5 higher in slightly acidic conditions (pH 6) comparative with that for strong acidic conditi…
The effect of long-chain bases on polysialic acid-mediated membrane interactions
2011
AbstractNegatively-charged polysialic acid (polySia) chains are usually membrane-bound and are often expressed on the surface of neuroinvasive bacterial cells, neural cells, and tumor cells. PolySia can mediate both repulsive and attractive cis interactions between membrane components, and trans interactions between membranes. Positively-charged long-chain bases are widely present in cells, are often localized in membranes and can function as bioactive lipids. Here we use Langmuir monolayer technique, fluorescence spectroscopy and electron microscopy of lipid vesicles to study the role of a simple long-chain base, octadecylamine (ODA), in both cis and trans interactions mediated by polySia …
Scrutiny of annexin A1 mediated membrane-membrane interaction by means of a thickness shear mode resonator and computer simulations.
2004
The dissipational quartz crystal microbalance (D-QCM) technology was applied to monitor the adsorption of vesicles to membrane-bound annexin A1 by simultaneously reading out the shifts in resonance frequency and dissipation. Solid-supported membranes (SSMs) composed of a chemisorbed octanethiol monolayer and a physisorbed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine monolayer were immobilized on the gold electrode of a 5 MHz quartz plate. Adsorption and desorption of annexin A1 to the SSM was followed by means of the QCM technique. After nonbound annexin A1 was removed from solution, the second membrane binding was monitored by the D-QCM t…
Binding, Interaction, and Organization of Proteins with Lipid Model Membranes
1991
Model membrane systems are used to investigate protein recognition and binding at interfaces. Fluorescence microscopy results are presented for interactions of the proteins, phospholipase A2 and antifluorescyl IgG, at lipid monolayer interfaces. Total internal reflection fluorescence measurements are used to quantify albumin and IgG adsorption to supported lipid monolayers.