Search results for "Monorhaphis"

showing 2 items of 2 documents

Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni.

2011

SUMMARY The giant basal spicule of the hexactinellid sponge Monorhaphis chuni represents the longest natural siliceous structure on Earth. This spicule is composed of concentrically arranged lamellae that are approximately 10 μm thick. In the present study, we investigated the formation of outer lamellae on a cellular level using microscopic and spectroscopic techniques. It is shown that the formation of an outermost lamella begins with the association of cell clusters with the surface of the thickening and/or growing spicule. The cells release silica for controlled formation of a lamella. The pericellular (silica) material fuses to a delimited and textured layer of silica with depressions …

SpiculePhysiologyMineralogy02 engineering and technologyAquatic Science03 medical and health sciencesAnimalsComposite materialMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biology0303 health sciencesbiologyMonorhaphisHexactinellidSpectrometry X-Ray Emission021001 nanoscience & nanotechnologybiology.organism_classificationSilicon DioxideSilica depositionPoriferaSpongeLamella (surface anatomy)Insect ScienceAnimal Science and ZoologyThickening0210 nano-technologyLayer (electronics)The Journal of experimental biology
researchProduct

Chapter 3 Giant Siliceous Spicules From the Deep‐sea Glass Sponge Monorhaphis chuni

2009

Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe th…

SpongeSpiculePaleontologyMorphology (linguistics)Sponge spiculebiologyMonorhaphisMechanical stabilityHexactinellidbiology.organism_classificationDeep sea
researchProduct