Search results for "Monotonic function"

showing 10 items of 87 documents

Existence, uniqueness and comparison results for BSDEs with Lévy jumps in an extended monotonic generator setting

2018

We show existence of a unique solution and a comparison theorem for a one-dimensional backward stochastic differential equation with jumps that emerge from a L\'evy process. The considered generators obey a time-dependent extended monotonicity condition in the y-variable and have linear time-dependent growth. Within this setting, the results generalize those of Royer (2006), Yin and Mao (2008) and, in the $L^2$-case with linear growth, those of Kruse and Popier (2016). Moreover, we introduce an approximation technique: Given a BSDE driven by Brownian motion and Poisson random measure, we consider BSDEs where the Poisson random measure admits only jumps of size larger than $1/n$. We show con…

Comparison theorembackward stochastic differential equationMonotonic function01 natural sciencesLévy processlcsh:QA75.5-76.95010104 statistics & probabilityMathematics::ProbabilityApplied mathematicsUniqueness0101 mathematicsBrownian motionstokastiset prosessitMathematicsLévy processResearch010102 general mathematicsComparison resultsPoisson random measureBackward stochastic differential equationlcsh:Electronic computers. Computer science60H10lcsh:Probabilities. Mathematical statisticscomparison theoremlcsh:QA273-280differentiaaliyhtälötMathematics - ProbabilityGenerator (mathematics)existence and uniquenessProbability, Uncertainty and Quantitative Risk
researchProduct

The shape of small sample biases in pricing kernel estimations

2016

AbstractNumerous empirical studies find pricing kernels that are not-monotonically decreasing; the findings are at odds with the pricing kernel being marginal utility of a risk-averse, so-called representative agent. We study in detail the common procedure which estimates the pricing kernel as the ratio of two separate density estimations. In the first step, we analyse theoretically the functional dependence for the ratio of a density to its estimated density; this cautions the reader regarding potential computational issues coupled with statistical techniques. In the second step, we study this quantitatively; we show that small sample biases shape the estimated pricing kernel, and that est…

Computer Science::Computer Science and Game Theory050208 finance05 social sciencesKernel density estimationMonotonic functionRepresentative agentImplied volatility01 natural sciencesOdds010104 statistics & probabilityEmpirical researchStochastic discount factor0502 economics and businessEconometrics0101 mathematicsMarginal utilityGeneral Economics Econometrics and FinanceFinanceMathematicsQuantitative Finance
researchProduct

Numerical propagator method solutions for the linear parabolic initial boundary-value problems

2007

On the base of our numerical propagator method a new finite volume difference scheme is proposed for solution of linear initial-boundary value problems. Stability of the scheme is investigated taking into account the obtained analytical solution of the initial-boundary value problems. It is shown that stability restrictions for the propagator scheme become weaker in comparison to traditional semi-implicit difference schemes. There are some regions of coefficients, for which the elaborated propagator difference scheme becomes absolutely stable. It is proven that the scheme is unconditionally monotonic. Analytical solutions, which are consistent with solubility conditions of the problem are f…

Constant coefficientsFinite volume methodScheme (mathematics)Mathematical analysisPropagatorMonotonic functionBoundary value problemBase (topology)Stability (probability)MathematicsPAMM
researchProduct

Flexible Estimation of Heteroskedastic Stochastic Frontier Models via Two-step Iterative Nonlinear Least Squares

2019

Despite its importance, the monotonicity condition is typically overlooked in stochastic frontier analysis. This article illustrates a straightforward and useful method for the estimation of semiparametric stochastic frontier models imposing such constraint and incorporating exogenous inefficiency effects exploiting the scaling property. An iterative estimation algorithm based on nonlinear least squares is developed and the behavior of the proposed procedure is investigated through a set of Monte Carlo experiments comparing its finite sample properties with those of available alternatives. The simulation results highlight very good performance of the new algorithm which outperforms the comp…

Constraint (information theory)HeteroscedasticityStochastic frontier analysisComputer scienceNon-linear least squaresMonte Carlo methodApplied mathematicsFraction (mathematics)Monotonic functionSample (statistics)SSRN Electronic Journal
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

An abstract doubly nonlinear equation with a measure as initial value

2007

Abstract The solvability of the abstract implicit nonlinear nonautonomous differential equation ( A ( t ) u ( t ) ) ′ + B ( t ) u ( t ) + C ( t ) u ( t ) ∋ f ( t ) will be investigated in the case of a measure as an initial value. It will be shown that this problem has a solution if the inner product of A ( t ) x and B ( t ) x + C ( t ) x is bounded below.

Differential equationApplied MathematicsMathematical analysisMonotonic functionNonlinear evolution equationMeasure (mathematics)Nonlinear systemMaximal monotone operatorProduct (mathematics)Bounded functionEvolution equationInitial value problemAnalysisMathematical physicsMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Global Non-monotonicity of Solutions to Nonlinear Second-Order Differential Equations

2018

We study behavior of solutions to two classes of nonlinear second-order differential equations with a damping term. Sufficient conditions for the first derivative of a solution x(t) to change sign at least once in a given interval (in a given infinite sequence of intervals) are provided. These conditions imply global non-monotone behavior of solutions.

Differential equationGeneral Mathematics010102 general mathematicsMonotonic functionInterval (mathematics)01 natural sciencesNonlinear differential equationsTerm (time)010101 applied mathematicsSecond order differential equationsNonlinear systemApplied mathematics0101 mathematicsNonlinear differential equations ; non-monotone behaviour ; second order ; damping term ; reciprocal equationSign (mathematics)MathematicsMediterranean Journal of Mathematics
researchProduct

An Application of the Fixed Point Theory to the Study of Monotonic Solutions for Systems of Differential Equations

2020

In this paper, we establish some conditions for the existence and uniqueness of the monotonic solutions for nonhomogeneous systems of first-order linear differential equations, by using a result of the fixed points theory for sequentially complete gauge spaces.

Differential equationfixed point theorylcsh:MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisFixed-point theoremMonotonic functionGauge (firearms)Fixed pointlcsh:QA1-939sequentially complete gauge spaces.01 natural sciences010101 applied mathematicsLinear differential equationComputer Science (miscellaneous)systems of differential equationsexistence and uniqueness theoremsUniqueness0101 mathematicsEngineering (miscellaneous)monotonic solutionsMathematicsMathematics
researchProduct

Positive solutions for parametric singular Dirichlet(p,q)-equations

2020

Abstract We consider a nonlinear elliptic Dirichlet problem driven by the ( p , q ) -Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f ( z , x ) which is ( p − 1 ) -linear as x → + ∞ . First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter λ > 0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u λ ∗ and investigate the monotonicity and continuity properties of the map λ → u λ ∗ .

Dirichlet problemPure mathematicsApplied Mathematics010102 general mathematicsSingular termPerturbation (astronomy)Monotonic function01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeNonlinear systemsymbols0101 mathematicsLaplace operatorAnalysisParametric statisticsMathematicsNonlinear Analysis
researchProduct