Search results for "Multi-Objective Optimization."
showing 10 items of 189 documents
Connections Between Single-Level and Bilevel Multiobjective Optimization
2011
The relationship between bilevel optimization and multiobjective optimization has been studied by several authors and there have been repeated attempts to establish a link between the two. We unify the results from the literature and generalize them for bilevel multiobjective optimization. We formulate sufficient conditions for an arbitrary binary relation to guarantee equality between the efficient set produced by the relation and the set of optimal solutions to a bilevel problem. In addition, we present specially structured bilevel multiobjective optimization problems motivated by real-life applications and an accompanying binary relation permitting their reduction to single-level multiob…
Improving distance based image retrieval using non-dominated sorting genetic algorithm
2015
Image retrieval is formulated as a multiobjective optimization problem.A multiobjective genetic algorithm is hybridized with distance based search.A parameter balances exploration (genetic search) or exploitation (nearest neighbors).Extensive comparative experimentation illustrate and assess the proposed methodology. Relevance feedback has been adopted as a standard in Content Based Image Retrieval (CBIR). One major difficulty that algorithms have to face is to achieve and adequate balance between the exploitation of already known areas of interest and the exploration of the feature space to find other relevant areas. In this paper, we evaluate different ways to combine two existing relevan…
On the Use of Preferential Weights in Interactive Reference Point Based Methods
2009
We introduce a new way of utilizing preference information specified by the decision maker in interactive reference point based methods. A reference point consists of aspiration levels for each objective function. We take the desires of the decision maker into account more closely when projecting the reference point to become nondominated. In this way we can support the decision maker in finding the most satisfactory solutions faster. In practice, we adjust the weights in the achievement scalarizing function that projects the reference point. We demonstrate our idea with an example and we summarize results of computational tests that support the efficiency of the idea proposed.
Multi-objective optimization for computation offloading in mobile-edge computing
2017
Mobile-edge cloud computing is a new cloud platform to provide pervasive and agile computation augmenting services for mobile devices (MDs) at anytime and anywhere by endowing ubiquitous radio access networks with computing capabilities. Although offloading computations to the cloud can reduce energy consumption at the MDs, it may also incur a larger execution delay. Usually the MDs have to pay cloud resource they used. In this paper, we utilize queuing theory to bring a thorough study on the energy consumption, execution delay and price cost of offloading process in a mobile-edge cloud system. Specifically, both wireless transmission and computing capabilities are explicitly and jointly co…
Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based Surrogate in a Discrete Decision Space
2019
In this paper, a clustering based surrogate is proposed to be used in offline data-driven multiobjective optimization to reduce the size of the optimization problem in the decision space. The surrogate is combined with an interactive multiobjective optimization approach and it is applied to forest management planning with promising results. peerReviewed
A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem
2017
A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed
Data-driven Interactive Multiobjective Optimization : Challenges and a Generic Multi-agent Architecture
2020
In many decision making problems, a decision maker needs computer support in finding a good compromise between multiple conflicting objectives that need to be optimized simultaneously. Interactive multiobjective optimization methods have a lot of potential for solving such problems. However, the growth of complexity in problem formulations and the abundance of data bring new challenges to be addressed by decision makers and method developers. On the other hand, advances in the field of artificial intelligence provide opportunities in this respect. We identify challenges and propose directions of addressing them in interactive multiobjective optimization methods with the help of multiple int…
Multi-modal search for multiobjective optimization: an application to optimal smart grids management
2012
This paper studies the possibility to use efficient multimodal optimizers for multi-objective optimization. In this paper, the application area considered for such new approach is the optimal dispatch of energy sources in smart microgrids. The problem indeed shows a non uniform Pareto front and requires efficient optimal search methods. The idea is to exploit the potential of agents in population-based heuristics to improve diversity in the Pareto front, where solutions show the same rank and are thus equally weighted. Since Pareto dominance is at the basis of the theory of multi-objective optimization, most algorithms show the non dominance ranking as quality indicator, with some problem i…
Future wood demands and ecosystem services trade-offs: A policy analysis in Norway
2023
To mitigate climate change, several European countries have launched policies to promote the development of a renewable resource-based bioeconomy. These bioeconomy strategies plan to use renewable biological resources, which will increase timber and biomass demands and will potentially conflict with multiple other ecosystem services provided by forests. In addition, these forest ecosystem services (FES) are also influenced by other, different, policy strategies, causing a potential mismatch in proposed management solutions for achieving the different policy goals. We evaluated how Norwegian forests can meet the projected wood and biomass demands from the international market for achieving m…
Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study
2014
Dynamic process simulators for plant-wide process simulation and multiobjective optimization tools can be used by industries as a means to cut costs and enhance profitability. Specifically, dynamic process simulators are useful in the process plant design phase, as they provide several benefits such as savings in time and costs. On the other hand, multiobjective optimization tools are useful in obtaining the best possible process designs when multiple conflicting objectives are to be optimized simultaneously. Here we concentrate on interactive multiobjective optimization. When multiobjective optimization methods are used in process design, they need an access to dynamic process simulators, …