Search results for "MultiValue"
showing 10 items of 25 documents
A fixed point theorem for G-monotone multivalued mapping with application to nonlinear integral equations
2017
We extend notion and theorem of [21] to the case of a multivalued mapping defined on a metric space endowed with a finite number of graphs. We also construct an example to show the generality of our result over existing results. Finally, we give an application to nonlinear integral equations
Comments on the paper "COINCIDENCE THEOREMS FOR SOME MULTIVALUED MAPPINGS" by B. E. RHOADES, S. L. SINGH AND CHITRA KULSHRESTHA
2011
The aim of this note is to point out an error in the proof of Theorem 1 in the paper entitled “Coincidence theorems for some multivalued mappings” by B. E. Rhoades, S. L. Singh and Chitra Kulshrestha [Internat. J. Math. & Math. Sci., 7 (1984), 429-434], and to indicate a way to repair it.
Metric regularity and second-order necessary optimality conditions for minimization problems under inclusion constraints
1994
In this paper, we establish some general metric regularity results for multivalued functions on Banach spaces. Then, we apply them to derive second-order necessary optimality conditions for the problem of minimizing a functionf on the solution set of an inclusion 0?F(x) withx?C, whenF has a closed convex second-order derivative.
Regularity and strong sufficient optimality conditions in differentiable optimization problems
1993
This paper studies the metric regularity of multivalued functions on Banach spaces, tangential approximations of the feasible set and strong sufficient optimality conditions of a parametrized optimization problem minimize The results are applied to the tangent approximations and the local stability properties of solutions of this perturbed optimization problem.
An approximate fixed point result for multivalued mappings under two constraint inequalities
2017
We consider an approximate multivalued fixed point problem under two constraint inequalities, for which we provide sufficient conditions for the existence of at least one solution. Then, we present some consequences and related results.
Qualification conditions for multivalued functions in Banach spaces with applications to nonsmooth vector optimization problems
1994
In this paper we introduce qualification conditions for multivalued functions in Banach spaces involving the A-approximate subdifferential, and we show that these conditions guarantee metric regularity of multivalued functions. The results are then applied for deriving Lagrange multipliers of Fritz—John type and Kuhn—Tucker type for infinite non-smooth vector optimization problems.
Qualification Conditions for Calculus Rules of Coderivatives of Multivalued Mappings
1998
AbstractThis paper establishes by a general approach a full calculus for the limiting Fréchet and the approximate coderivatives of multivalued mappings. This approach allows us to produce several new verifiable qualification conditions for such calculus rules.
Fixed Points for Multivalued Weighted Mean Contractions in a Symmetric Generalized Metric Space
2020
This paper defines two new concepts: the concept of multivalued left-weighted mean contractions in the generalized sense of Nadler in a symmetric generalized metric space and the concept of multivalued right-weighted mean contractions in the generalized sense of Nadler in a symmetric generalized metric space, and demonstrates fixed-point theorems for them. For these, we demonstrated two fixed-point existence theorems and their corollaries, by using the properties of the regular-global-inf function and the properties of symmetric generalized metric spaces, respectively. Moreover, we demonstrated that the theorems can be applied in particular cases of inclusion systems. This article contains …
Decompositions of Weakly Compact Valued Integrable Multifunctions
2020
We give a short overview on the decomposition property for integrable multifunctions, i.e., when an &ldquo
Solvability of integrodifferential problems via fixed point theory in b-metric spaces
2015
The purpose of this paper is to study the existence of solutions set of integrodifferential problems in Banach spaces. We obtain our results by using fixed point theorems for multivalued mappings, under new contractive conditions, in the setting of complete b-metric spaces. Also, we present a data dependence theorem for the solutions set of fixed point problems.