Search results for "Multispectral"

showing 10 items of 242 documents

Remote Sensing Image Classification with Large Scale Gaussian Processes

2017

Current remote sensing image classification problems have to deal with an unprecedented amount of heterogeneous and complex data sources. Upcoming missions will soon provide large data streams that will make land cover/use classification difficult. Machine learning classifiers can help at this, and many methods are currently available. A popular kernel classifier is the Gaussian process classifier (GPC), since it approaches the classification problem with a solid probabilistic treatment, thus yielding confidence intervals for the predictions as well as very competitive results to state-of-the-art neural networks and support vector machines. However, its computational cost is prohibitive for…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer scienceMultispectral image0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyLand cover01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Kernel (linear algebra)Bayes' theoremsymbols.namesakeStatistics - Machine LearningApplications (stat.AP)Electrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingContextual image classificationArtificial neural networkData stream miningProbabilistic logicSupport vector machineComputer Science - LearningKernel (image processing)symbolsGeneral Earth and Planetary Sciences
researchProduct

Pattern Recognition Scheme for Large-Scale Cloud Detection over Landmarks

2020

Landmark recognition and matching is a critical step in many Image Navigation and Registration (INR) models for geostationary satellite services, as well as to maintain the geometric quality assessment (GQA) in the instrument data processing chain of Earth observation satellites. Matching the landmark accurately is of paramount relevance, and the process can be strongly impacted by the cloud contamination of a given landmark. This paper introduces a complete pattern recognition methodology able to detect the presence of clouds over landmarks using Meteosat Second Generation (MSG) data. The methodology is based on the ensemble combination of dedicated support vector machines (SVMs) dependent…

FOS: Computer and information sciencesAtmospheric ScienceMatching (statistics)Computer Science - Machine LearningSource code010504 meteorology & atmospheric sciencesComputer scienceComputer Vision and Pattern Recognition (cs.CV)media_common.quotation_subjectMultispectral image0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern RecognitionCloud computing02 engineering and technology01 natural sciencesMachine Learning (cs.LG)Computers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesmedia_commonLandmarkbusiness.industryPattern recognitionSupport vector machinePattern recognition (psychology)Geostationary orbitArtificial intelligencebusiness
researchProduct

Nonlinear Cook distance for Anomalous Change Detection

2020

In this work we propose a method to find anomalous changes in remote sensing images based on the chronochrome approach. A regressor between images is used to discover the most {\em influential points} in the observed data. Typically, the pixels with largest residuals are decided to be anomalous changes. In order to find the anomalous pixels we consider the Cook distance and propose its nonlinear extension using random Fourier features as an efficient nonlinear measure of impact. Good empirical performance is shown over different multispectral images both visually and quantitatively evaluated with ROC curves.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyMeasure (mathematics)Machine Learning (cs.LG)Kernel (linear algebra)symbols.namesake0502 economics and businessCook's distance021101 geological & geomatics engineering050208 financePixelbusiness.industry05 social sciencesPattern recognitionNonlinear systemFourier transformKernel (image processing)Computer Science::Computer Vision and Pattern RecognitionsymbolsArtificial intelligencebusinessChange detection
researchProduct

Kernel Anomalous Change Detection for Remote Sensing Imagery

2020

Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…

FOS: Computer and information sciencesComputer scienceGaussianComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologysymbols.namesakeStatistics - Machine LearningElectrical and Electronic Engineering021101 geological & geomatics engineeringbusiness.industryHilbert spaceHyperspectral imagingPattern recognitionNonlinear systemKernel methodKernel (image processing)13. Climate actionsymbolsGeneral Earth and Planetary SciencesArtificial intelligencebusinessChange detection
researchProduct

Multispectral image denoising with optimized vector non-local mean filter

2016

Nowadays, many applications rely on images of high quality to ensure good performance in conducting their tasks. However, noise goes against this objective as it is an unavoidable issue in most applications. Therefore, it is essential to develop techniques to attenuate the impact of noise, while maintaining the integrity of relevant information in images. We propose in this work to extend the application of the Non-Local Means filter (NLM) to the vector case and apply it for denoising multispectral images. The objective is to benefit from the additional information brought by multispectral imaging systems. The NLM filter exploits the redundancy of information in an image to remove noise. A …

FOS: Computer and information sciencesMulti-spectral imaging systemsComputer Vision and Pattern Recognition (cs.CV)Optimization frameworkMultispectral imageComputer Science - Computer Vision and Pattern Recognition02 engineering and technologyWhite noisePixels[SPI]Engineering Sciences [physics][ SPI ] Engineering Sciences [physics]0202 electrical engineering electronic engineering information engineeringComputer visionUnbiased risk estimatorMultispectral imageMathematicsMultispectral imagesApplied MathematicsBilateral FilterNumerical Analysis (math.NA)Non-local meansAdditive White Gaussian noiseStein's unbiased risk estimatorIlluminationComputational Theory and MathematicsRestorationImage denoisingsymbols020201 artificial intelligence & image processingNon-local mean filtersComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyGaussian noise (electronic)Non- local means filtersAlgorithmsNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFace Recognitionsymbols.namesakeNoise RemovalArtificial IntelligenceFOS: MathematicsParameter estimationMedian filterMathematics - Numerical AnalysisElectrical and Electronic EngineeringFusionPixelbusiness.industryVector non-local mean filter020206 networking & telecommunicationsPattern recognitionFilter (signal processing)Bandpass filters[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/ElectronicsStein's unbiased risk estimators (SURE)NoiseAdditive white Gaussian noiseComputer Science::Computer Vision and Pattern RecognitionSignal ProcessingArtificial intelligenceReconstructionbusinessModel
researchProduct

Extending the Unmixing methods to Multispectral Images

2021

In the past few decades, there has been intensive research concerning the Unmixing of hyperspectral images. Some methods such as NMF, VCA, and N-FINDR have become standards since they show robustness in dealing with the unmixing of hyperspectral images. However, the research concerning the unmixing of multispectral images is relatively scarce. Thus, we extend some unmixing methods to the multispectral images. In this paper, we have created two simulated multispectral datasets from two hyperspectral datasets whose ground truths are given. Then we apply the unmixing methods (VCA, NMF, N-FINDR) to these two datasets. By comparing and analyzing the results, we have been able to demonstrate some…

FOS: Computer and information sciencesMultispectral Imagesbusiness.industryComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageImage and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionHyperspectral imagingPattern recognitionUnmixingElectrical Engineering and Systems Science - Image and Video ProcessingField (computer science)Non-negative matrix factorizationRobustness (computer science)FOS: Electrical engineering electronic engineering information engineeringArtificial intelligencebusiness
researchProduct

Towards combined multispectral, FLIM and Raman imaging for skin diagnostics

2020

To explore challenges for further improvement of diagnostic performance, a project aimed at development of technology for tri-modal skin imaging by combining multispectral, fluorescence lifetime and Raman band imaging was initiated. In this study, each of the mentioned imaging modalities has been preliminary tested and updated. Four different multispectral imaging devices were tested on color standards. Picosecond laser-excited fluorescence lifetime imaging equipment was examined on ex-vivo skin samples. Finally, a new Raman spectroscopy setup with 785 nm laser was launched and tested on cell cultures and ex-vivo skin. Advantages and specific features of the tri-modal skin imaging are discu…

Fluorescence-lifetime imaging microscopyMaterials sciencebusiness.industryMultispectral imageRaman imagingLaserFluorescencelaw.inventionsymbols.namesakelawRaman bandPicosecondsymbolsOptoelectronicsRaman spectroscopybusinessMultimodal Biomedical Imaging XV
researchProduct

Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications

2011

VTT Technical Research Centre of Finland has developed a Fabry-Perot Interferometer (FPI) based hyperspectral imager compatible with the light weight UAV platforms. The concept of the hyperspectral imager has been published in the SPIE Proc. 7474 and 7668. In forest and agriculture applications the recording of multispectral images at a few wavelength bands is in most cases adequate. The possibility to calculate a digital elevation model of the forest area and crop fields provides means to estimate the biomass and perform forest inventory. The full UAS multispectral imaging system will consist of a high resolution false color imager and a FPI based hyperspectral imager which can be used at …

Forest inventoryPixelbusiness.industryMultispectral imageImaging spectrometerHyperspectral imagingField of viewFalse colorGeographyAstronomical interferometerComputer visionArtificial intelligencebusinessRemote sensing
researchProduct

Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning

2014

Mango fruit are sensitive and can easily develop brown spots after suffering mechanical stress during postharvest handling, transport and marketing. The manual inspection of this fruit used today cannot detect the damage in very early stages of maturity and to date no automatic tool capable of such detection has been developed, since current systems based on machine vision only detect very visible damage. The application of hyperspectral imaging to the postharvest quality inspection of fruit is relatively recent and research is still underway to find a method of estimating internal properties or detecting invisible damage. This work describes a new system to evaluate mechanically induced da…

Fruit qualityEngineeringHyperspectral imagingPixelbusiness.industryMachine visionMultispectral imageSoil ScienceEarly detectionHyperspectral imagingMango fruitsControl and Systems EngineeringNon-destructive inspectionNondestructive testingFeature selectionClassification methodsComputer visionComputer visionArtificial intelligencebusinessMango fruitAgronomy and Crop ScienceFood Science
researchProduct

HyperLabelMe : A Web Platform for Benchmarking Remote-Sensing Image Classifiers

2017

HyperLabelMe is a web platform that allows the automatic benchmarking of remote-sensing image classifiers. To demonstrate this platform's attributes, we collected and harmonized a large data set of labeled multispectral and hyperspectral images with different numbers of classes, dimensionality, noise sources, and levels. The registered user can download training data pairs (spectra and land cover/use labels) and submit the predictions for unseen testing spectra. The system then evaluates the accuracy and robustness of the classifier, and it reports different scores as well as a ranked list of the best methods and users. The system is modular, scalable, and ever-growing in data sets and clas…

General Computer ScienceContextual image classificationComputer scienceMultispectral imageRegistered user020206 networking & telecommunications02 engineering and technologyBenchmarkingcomputer.software_genreData setStatistical classificationComputingMethodologies_PATTERNRECOGNITIONRobustness (computer science)ITC-ISI-JOURNAL-ARTICLE0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingData miningElectrical and Electronic EngineeringInstrumentationcomputerClassifier (UML)IEEE Geoscience and Remote Sensing Magazine
researchProduct