Search results for "Multitemporal"
showing 7 items of 7 documents
Enhancing TIR Image Resolution via Bayesian Smoothing for IRRISAT Irrigation Management Project
2013
Accurate estimation of physical quantities depends on the availability of High Resolution (HR) observations of the Earth surface. However, due to the unavoidable tradeoff between spatial and time resolution, the acquisition instants of HR data hardly coincides with those required by the estimation algorithms. A possible solution consists in constructing a synthetic HR observation at a given time k by exploiting Low Resolution (LR) and HR data acquired at different instants. In this work we recast this issue as a smoothing problem, thus focusing on cases in which observations acquired both before and after time k are available. The proposed approach is validated on a region of interest for t…
An interpolation-based data fusion scheme for enhancing the resolution of thermal image sequences
2014
In several human activities, such as agriculture and forest management, the monitoring of radiometric surface temperature is key. In particular both high spatial resolution and high acquisition rate are desirable but, due to the hardware limitations, these two characteristics are not met by the same sensor. The fusion of remotely sensed data acquired by sensors with different spatial and temporal resolution is a profitable choice to face this issue. When the real-time requirement is relaxed, the data sequence can be processed as a whole, allowing to improve the final result. Within this framework, we propose a novel batch sharpening strategy, relying on interpolation, data fusion and Bayesi…
Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection
2008
The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…
Desarrollo de productos avanzados para la misión SEOSAT/Ingenio
2016
SEOSAT/Ingenio es la futura misión española de observación de la Tierra en el óptico en alta resolución espacial. Mientras que los productos de imagen a Nivel 1, radiancias geo-referenciadas a nivel de sensor, se encuentran en una fase avanzada de desarrollo existiendo para ello un contrato industrial, los productos de Nivel 2 deben ser desarrollados por los propios usuarios. Este hecho limita el uso de las imágenes a la comunidad científica, restringiendo sus posibles aplicaciones fuera de ésta. Así pues, bajo el marco de un proyecto coordinado y motivados por ofrecer productos de Ingenio/SEOSAT de Nivel 2 a disposición de cualquier usuario, se origina y desarrolla este trabajo. En este ar…
TERRESTRIAL LASER SCANNING FOR COASTAL GEOMORPHOLOGIC RESEARCH IN WESTERN GREECE
2012
We used terrestrial laser scanning (TLS) for (i) accurate volume estimations of dislocated boulders moved by high-energy impacts and for (ii) monitoring of annual coastal changes. In this contribution, we present three selected sites in Western Greece that were surveyed during a time span of four years (2008-2011). The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro). Each scan position and a further target were recorded for georeferencing and merging of the point clouds. For the annual detection of changes, reference points for the base station of the DGPS system were marked. Our studies show that TLS is capable to accurately estimate volu…
Robustified smoothing for enhancement of thermal image sequences affected by clouds
2015
Obtaining radiometric surface temperature information with both high acquisition rate and high spatial resolution is still not possible through a single sensor. However, in several earth observation applications, the fusion of data acquired by different sensors is a viable solution for so called image sharpening. A related issue is the presence of clouds, which may impair the performance of the data fusion algorithms. In this paper we propose a robustified setup for the sharpening of thermal images in a non real-time scenario, capable to deal with missing thermal data due to cloudy pixels, and robust with respect to cloud mask misclassifications. The effectiveness of the presented technique…
Multitemporal Cloud Masking in the Google Earth Engine
2018
The exploitation of Earth observation satellite images acquired by optical instruments requires an automatic and accurate cloud detection. Multitemporal approaches to cloud detection are usually more powerful than their single scene counterparts since the presence of clouds varies greatly from one acquisition to another whereas surface can be assumed stationary in a broad sense. However, two practical limitations usually hamper their operational use: the access to the complete satellite image archive and the required computational power. This work presents a cloud detection and removal methodology implemented in the Google Earth Engine (GEE) cloud computing platform in order to meet these r…