Search results for "Mutant Protein"

showing 10 items of 42 documents

Circadian System Functionality, Hippocampal Oxidative Stress, and Spatial Memory in the APPswe/PS1dE9 Transgenic Model of Alzheimer Disease: Effects …

2012

Alzheimer disease (AD) is a neurodegenerative disorder that primarily causes β-amyloid accumulation in the brain, resulting in cognitive and behavioral deficits. AD patients, however, also suffer from severe circadian rhythm disruptions, and the underlying causes are still not fully known. Patients with AD show reduced systemic melatonin levels. This may contribute to their symptoms, since melatonin is an effective chronobiotic and antioxidant with neuroprotective properties. Here, the authors critically assessed the effects of long-term melatonin treatment on circadian system function, hippocampal oxidative stress, and spatial memory performance in the APPswe/PS1 double transgenic (Tg) mou…

Malemedicine.medical_specialtyPhysiologyChronobioticRamelteonReceptors MelatoninHippocampusMice TransgenicMotor Activitymedicine.disease_causeHippocampusNeuroprotectionBody TemperatureMelatoninAmyloid beta-Protein PrecursorMiceAlzheimer DiseaseMemoryPhysiology (medical)Internal medicinePresenilin-1medicineAnimalsCircadian rhythmMelatoninmedicine.diseaseCircadian RhythmDisease Models AnimalOxidative StressEndocrinologyIndenesMutant ProteinsAlzheimer's diseasePsychologyNeuroscienceOxidative stressmedicine.drugChronobiology International
researchProduct

Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm

2020

We have previously shown that the thermolabile, cavity-creating p53 cancer mutant Y220C can be reactivated by small-molecule stabilizers. In our ongoing efforts to unearth druggable variants of the p53 mutome, we have now analyzed the effects of other cancer-associated mutations at codon 220 on the structure, stability, and dynamics of the p53 DNA-binding domain (DBD). We found that the oncogenic Y220H, Y220N, and Y220S mutations are also highly destabilizing, suggesting that they are largely unfolded under physiological conditions. A high-resolution crystal structure of the Y220S mutant DBD revealed a mutation-induced surface crevice similar to that of Y220C, whereas the corresponding pock…

Models Molecular0301 basic medicineMutantCarbazolesDruggabilityCancer therapyAntineoplastic Agents01 natural sciencesBiochemistryDNA-binding proteinStructure-Activity Relationship03 medical and health sciencesProtein DomainsHumansCancer mutationsThermolabileQD0415Protein Stability010405 organic chemistryChemistryArticlesGeneral MedicineSmall moleculeAffinities0104 chemical sciences030104 developmental biologyGene Expression RegulationMutationBiophysicsMolecular MedicineMutant ProteinsDrug Screening Assays AntitumorTumor Suppressor Protein p53CrystallizationProtein BindingQD0241ACS Chemical Biology
researchProduct

Identification of residues in the putative 5th helical region of human interleukin-6, important for activation of the IL-6 signal transducer, gp130

1996

AbstractWe have previously shown that L58 in the putative 5th helical region of human interleukin-6 (IL-6) is important for activation of the IL-6 signal transducer gp130 [de Hon et al. (1995) FEBS Lett. 369, 187–191]. To further explore the importance of individual residues in this region for gp130 activation we have now combined Ala substitutions of residues E52, S53, S54, K55, E56, L58 and E60 with other substitutions in IL-6, known to affect gp130 activation (Q160E and T163P). The combination mutant protein with L58A completely lost the capacity to induce the proliferation of XG-1 myeloma cells, and could effectively antagonize wild type IL-6 activity on these cells. Moreover, the data …

Models MolecularBiophysicsHuman Interleukin-6BiochemistryProtein Structure SecondaryStructure-function analysisgp130Signal Transducer gp130Antigens CDStructural BiologyMutant proteinCytokine Receptor gp130Escherichia coliTumor Cells CulturedGeneticsHumansPoint MutationCloning MolecularInterleukin 6Molecular BiologyAlanineMembrane GlycoproteinsbiologyInterleukin-6Wild typeCell BiologyGlycoprotein 130Recombinant ProteinsProtein Structure TertiaryCell biologyKineticsBiochemistryMutagenesis Site-Directedbiology.proteinLeukemia Erythroblastic AcuteMultiple MyelomaCell DivisionSignal TransductionFEBS Letters
researchProduct

Crystal structures of bR(D85S) favor a model of bacteriorhodopsin as a hydroxyl-ion pump

2003

AbstractStructural features on the extracellular side of the D85S mutant of bacteriorhodopsin (bR) suggest that wild-type bR could be a hydroxyl-ion pump. A position between the protonated Schiff base and residue 85 serves as an anion-binding site in the mutant protein, and hydroxyl ions should have access to this site during the O-intermediate of the wild-type bR photocycle. The guanidinium group of R82 is proposed (1) to serve as a shuttle that eliminates the Born energy penalty for entry of an anion into this binding pocket, and conversely, (2) to block the exit of a proton or a related proton carrier.

Models MolecularProtein ConformationAnion Transport ProteinsBiophysicsBacteriorhodopsinProtonationCrystal structureCrystallography X-RayBiochemistryIon pumpIonchemistry.chemical_compoundResidue (chemistry)Structural BiologyMutant proteinHydroxidesGeneticsMolecular BiologyIon TransportSchiff basebiologyChemistryBacteriorhodopsinCell BiologyCrystallographyIon pumpBacteriorhodopsinsMutationbiology.proteinHydroxyl ionProtonsFEBS Letters
researchProduct

Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family[W]

2007

Abstract Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids …

Models MolecularStrictosidine synthaseGlutamineGlutamic AcidPlant ScienceCrystallography X-RayLigandsCatalysisProtein Structure SecondaryRauwolfiaIndole AlkaloidsSubstrate Specificitychemistry.chemical_compoundBiosynthesisHydrolaseVinca AlkaloidsResearch ArticlesBinding SitesbiologyATP synthaseIndole alkaloidActive siteCell BiologySecologanin Tryptamine AlkaloidsKineticsBiochemistrychemistryStrictosidinebiology.proteinMutagenesis Site-DirectedMutant ProteinsGlucosidasesGlucosidases
researchProduct

The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended

2012

Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16–21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagen…

Models Moleculargenetics [Receptors Dopamine D3]metabolism [Recombinant Proteins]Protein Conformationgenetics [Antigens CD18]chemistry [Recombinant Proteins]Plasma protein bindingCrystallography X-RayLigandsFilaminmetabolism [Antigens CD18]metabolism [Cytoskeletal Proteins]BiochemistryfilaminsContractile ProteinsProtein structuremetabolism [Peptide Fragments]FLNAchemistry [Antigens CD18]genetics [Cell Adhesion Molecules]Small-angle X-ray scatteringMicrofilament Proteinsgenetics [Contractile Proteins]Recombinant Proteinschemistry [Receptors Dopamine D3]FBLIM1 protein humanddc:540Domain (ring theory)DimerizationProtein Bindingchemistry [Contractile Proteins]FilaminsAntigens CD18metabolism [Cell Adhesion Molecules]BiologyScattering Small Anglemetabolism [Receptors Dopamine D3]Humanschemistry [Microfilament Proteins]Protein Interaction Domains and Motifsmetabolism [Mutant Proteins]DRD3 protein humanMolecular Biologymetabolism [Contractile Proteins]Actingenetics [Cytoskeletal Proteins]Cryoelectron MicroscopyMutagenesista1182Receptors Dopamine D3metabolism [Microfilament Proteins]Cell Biologychemistry [Cell Adhesion Molecules]genetics [Peptide Fragments]Peptide FragmentsCytoskeletal ProteinsCrystallographychemistry [Mutant Proteins]chemistry [Peptide Fragments]CD18 AntigensBiophysicschemistry [Cytoskeletal Proteins]Mutant Proteinsgenetics [Microfilament Proteins]Cell Adhesion MoleculesBiochemical Journal
researchProduct

Leucine-58 in the putative 5th helical region of human interleukin (IL)-6 is important for activation of the IL-6 signal transducer, gp130

1995

A model of the tertiary structure of human IL-6, derived from the crystal-structure of granulocyte-colony stimulating factor, reveals a 5th helical region in the loop between the first and second alpha-helix. To investigate the importance of this region for biological activity of IL-6, residues Glu-52, Ser-53, Ser-54, Lys-55, Glu-56, Leu-58, and Glu-60 were individually replaced by alanine. IL-6.Leu-58Ala displayed a 5-fold reduced biological activity on the IL-6 responsive human cell lines XG-1 and A375. This reduction in bioactivity was shown to be due to a decreased capacity of the mutant protein to trigger IL-6 receptor-alpha-chain-dependent binding to the IL-6 signal transducer, gp130.

Models Molecularmedicine.medical_specialtyMolecular Sequence DataBiophysicsBiologyBiochemistryBinding CompetitiveProtein Structure SecondaryMiceStructure-function analysisgp130Structural BiologyMutant proteinAntigens CDLeucineInternal medicineGeneticsmedicineCytokine Receptor gp130Tumor Cells CulturedAnimalsHumansAmino Acid SequenceMolecular BiologyAlanineHybridomasMembrane GlycoproteinsBase SequenceInterleukin-6InterleukinBiological activityCell BiologyReceptors InterleukinGlycoprotein 130Receptors Interleukin-6Protein tertiary structureCell biologyProtein Structure TertiaryEndocrinologyMutationLeucineSignal transductionSequence AlignmentCell DivisionSignal TransductionFEBS Letters
researchProduct

Delayed lysis confers resistance to the nucleoside analogue 5-fluorouracil and alleviates mutation accumulation in the single-stranded DNA bacterioph…

2014

ABSTRACT Rates of spontaneous mutation determine viral fitness and adaptability. In RNA viruses, treatment with mutagenic nucleoside analogues selects for polymerase variants with increased fidelity, showing that viral mutation rates can be adjusted in response to imposed selective pressures. However, this type of resistance is not possible in viruses that do not encode their own polymerases, such as single-stranded DNA viruses. We previously showed that serial passaging of bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU) favored substitutions in the lysis protein E (P. Domingo-Calap, M. Pereira-Gomez, and R. Sanjuán, J. Virol. 86: 9640–9646, 2012, doi:10…

Mutation rateImmunologyAdaptation BiologicalMutation MissenseDNA Single-Strandedmedicine.disease_causeMicrobiologyBacteriophage03 medical and health scienceschemistry.chemical_compoundViral ProteinsBacteriolysisMutation RateVirologymedicineBacteriophagesSelection GeneticPolymerase030304 developmental biologyGenetics0303 health sciencesMutationbiology030302 biochemistry & molecular biologyMutagenesisMutation AccumulationResistance mutationbiology.organism_classificationVirologychemistryGenetic Diversity and EvolutionInsect ScienceDNA Viralbiology.proteinMutant ProteinsFluorouracilDNAJournal of virology
researchProduct

Single amino acids in the lumenal loop domain influence the stability of the major light-harvesting chlorophyll a/b complex.

2004

The major light-harvesting complex of photosystem II (LHCIIb) is one of the most abundant integral membrane proteins. It greatly enhances the efficiency of photosynthesis in green plants by binding a large number of accessory pigments that absorb light energy and conduct it toward the photosynthetic reaction centers. Most of these pigments are associated with the three transmembrane and one amphiphilic alpha helices of the protein. Less is known about the significance of the loop domains connecting the alpha helices for pigment binding. Therefore, we randomly exchanged single amino acids in the lumenal loop domain of the bacterially expressed apoprotein Lhcb1 and then reconstituted the muta…

Photosynthetic reaction centreProtein FoldingPhotosystem IIPigment bindingDNA Mutational AnalysisLight-Harvesting Protein ComplexesPeasPhotosystem II Protein ComplexBiologyBiochemistryTransmembrane proteinProtein Structure SecondaryProtein Structure TertiaryB vitaminsBiochemistryAmino Acid SubstitutionMutant proteinMutagenesis Site-DirectedPoint MutationAmino AcidsIntegral membrane proteinAccessory pigmentGene LibraryPlant ProteinsBiochemistry
researchProduct

Differential Roles of JNK in ConA/GalN and ConA-Induced Liver Injury in Mice

2008

Tumor necrosis factor-alpha-mediated liver injury can be induced by several different means; however, the signaling events and mechanisms of cell death are likely different. We investigated the mechanism of both apoptotic and necrotic hepatocyte cell death as well as the role of c-Jun NH2-terminal kinase (JNK) in the ConA and ConA/D-galactosamine (GalN) models of murine liver injury. ConA alone induced primarily necrotic cell death with no caspase activation, whereas ConA/GalN induced apoptosis in addition to necrotic cell death. The bi-modal death pattern in the ConA/GalN model was confirmed by the use of transgenic mice expressing a dominant-negative form of Fas-associated death domain in…

Programmed cell deathNecrosisFas-Associated Death Domain ProteinApoptosisGalactosamineMitochondria Liverchemical and pharmacologic phenomenaCaspase 8Pathology and Forensic MedicineMiceNecrosisConcanavalin AmedicineAnimalsPhosphorylationDeath domainLiver injuryCaspase 8biologyLiver DiseasesJNK Mitogen-Activated Protein Kinasesmedicine.diseaseMolecular biologyEnzyme ActivationMice Inbred C57BLDisease Models Animalmedicine.anatomical_structureConcanavalin AApoptosisHepatocytebiology.proteinMutant ProteinsChemical and Drug Induced Liver Injurymedicine.symptomGene DeletionRegular ArticlesBH3 Interacting Domain Death Agonist ProteinThe American Journal of Pathology
researchProduct