Search results for "Mutant"
showing 10 items of 670 documents
The LuxR Regulators PcoR and RfiA Co-regulate Antimicrobial Peptide and Alginate Production in Pseudomonas corrugata
2018
Cyclic lipopeptides (CLPs) are considered as some of the most important secondary metabolites in different plant-associated bacteria, thanks to their antimicrobial, cytotoxic, and surfactant properties. In this study, our aim was to investigate the role of the Quorum Sensing (QS) system, PcoI/PcoR, and the LuxR-type transcriptional regulator RfiA in CLP production in the phytopatogenic bacterium, Pseudomonas corrugata based on our previous work where we reported that the pcoR and rfiA mutants were devoid of the CLPs cormycin and corpeptin production. Due to the close genetic link between the QS system and the RfiA (rfiA is co-transcribed with pcoI), it was difficult to ascertain the specifi…
In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models
2016
Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…
Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10
2018
Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescen…
Anhydrobiosis in yeast: cell wall mannoproteins are important for yeastSaccharomyces cerevisiaeresistance to dehydration
2016
The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significa…
A study of PD-L1 expression in KRAS mutant non-small cell lung cancer cell lines exposed to relevant targeted treatments.
2017
We investigated PD-L1 changes in response to MEK and AKT inhibitors in KRAS mutant lung adenocarcinoma (adeno-NSCLC). PD-L1 expression was quantified using immunofluorescence and co-culture with a jurkat cell-line transfected with NFAT-luciferase was used to study if changes in PD-L1 expression in cancer cell lines were functionally relevant. Five KRAS mutant cell lines with high PD-L1 expression (H441, H2291, H23, H2030 and A549) were exposed to GI50 inhibitor concentrations of a MEK inhibitor (trametinib) and an AKT inhibitor (AZD5363) for 3 weeks. Only 3/5 (H23, H2030 and A549) and 2/5 cell lines (H441 and H23) showed functionally significant increases in PD-L1 expression when exposed to…
Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency
2020
ABSTRACTParkinson’s disease (PD) is a neurodenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. The pathological hallmark of PD is the loss of dopaminergic neurons in the substantia nigra pars compacta, which causes striatal dopamine deficiency. Although most PD cases are sporadic (iPD), approximately 5-10% of all patients suffer from monogenic PD forms caused by highly penetrant rare mutations segregating with the disease in families (fPD). One of the genes linked to monogenic PD is DJ-1. Mutations in DJ-1 cause autosomal recessive early-onset forms of fPD; however, it has been shown that an over-oxidized and inactive for…
Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation
2019
Copper (Cu) deficiency affects iron (Fe) homeostasis in several plant processes, including the increased Fe requirements due to cuproprotein substitutions for the corresponding Fe counterpart. Loss-of-function mutants from Arabidopsis thaliana high affinity copper transporter COPT5 and Fe transporters NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3/4 (NRAMP3 and NRAMP4) were used to study the interaction between metals internal pools. A physiological characterisation showed that the copt5 mutant is sensitive to Fe deficiency, and that nramp3nramp4 mutant growth was severely affected under limiting Cu. By a transcriptomic analysis, we observed that NRAMP4 expression was highly induced in …
A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis.
2016
International audience; In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrop…
Fold formation at the compartment boundary of Drosophila wing requires Yki signaling to suppress JNK dependent apoptosis
2016
AbstractCompartment boundaries prevent cell populations of different lineage from intermingling. In many cases, compartment boundaries are associated with morphological folds. However, in the Drosophila wing imaginal disc, fold formation at the anterior/posterior (A/P) compartment boundary is suppressed, probably as a prerequisite for the formation of a flat wing surface. Fold suppression depends on optomotor-blind (omb). Omb mutant animals develop a deep apical fold at the A/P boundary of the larval wing disc and an A/P cleft in the adult wing. A/P fold formation is controlled by different signaling pathways. Jun N-terminal kinase (JNK) and Yorkie (Yki) signaling are activated in cells alo…
Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog
2017
The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorim…