Search results for "Mutation Rate"
showing 10 items of 89 documents
Nucleoside Analogue Mutagenesis of a Single-Stranded DNA Virus: Evolution and Resistance
2012
ABSTRACT It has been well established that chemical mutagenesis has adverse fitness effects in RNA viruses, often leading to population extinction. This is mainly a consequence of the high RNA virus spontaneous mutation rates, which situate them close to the extinction threshold. Single-stranded DNA viruses are the fastest-mutating DNA-based systems, with per-nucleotide mutation rates close to those of some RNA viruses, but chemical mutagenesis has been much less studied in this type of viruses. Here, we serially passaged bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU). We found that 5-FU was unable to trigger population extinction for the range of conce…
The effect of genetic robustness on evolvability in digital organisms
2008
Abstract Background Recent work has revealed that many biological systems keep functioning in the face of mutations and therefore can be considered genetically robust. However, several issues related to robustness remain poorly understood, such as its implications for evolvability (the ability to produce adaptive evolutionary innovations). Results Here, we use the Avida digital evolution platform to explore the effects of genetic robustness on evolvability. First, we obtained digital organisms with varying levels of robustness by evolving them under combinations of mutation rates and population sizes previously shown to select for different levels of robustness. Then, we assessed the abilit…
Delayed lysis confers resistance to the nucleoside analogue 5-fluorouracil and alleviates mutation accumulation in the single-stranded DNA bacterioph…
2014
ABSTRACT Rates of spontaneous mutation determine viral fitness and adaptability. In RNA viruses, treatment with mutagenic nucleoside analogues selects for polymerase variants with increased fidelity, showing that viral mutation rates can be adjusted in response to imposed selective pressures. However, this type of resistance is not possible in viruses that do not encode their own polymerases, such as single-stranded DNA viruses. We previously showed that serial passaging of bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU) favored substitutions in the lysis protein E (P. Domingo-Calap, M. Pereira-Gomez, and R. Sanjuán, J. Virol. 86: 9640–9646, 2012, doi:10…
Changes in protein domains outside the catalytic site of the bacteriophage Qβ replicase reduce the mutagenic effect of 5-azacytidine.
2014
ABSTRACT The high genetic heterogeneity and great adaptability of RNA viruses are ultimately caused by the low replication fidelity of their polymerases. However, single amino acid substitutions that modify replication fidelity can evolve in response to mutagenic treatments with nucleoside analogues. Here, we investigated how two independent mutants of the bacteriophage Qβ replicase (Thr210Ala and Tyr410His) reduce sensitivity to the nucleoside analogue 5-azacytidine (AZC). Despite being located outside the catalytic site, both mutants reduced the mutation frequency in the presence of the drug. However, they did not modify the type of AZC-induced substitutions, which was mediated mainly by …
Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1
2010
Empirical knowledge of the fitness effects of mutations is important for understanding many evolutionary processes, yet this knowledge is often hampered by several sources of measurement error and bias. Most of these problems can be solved using site-directed mutagenesis to engineer single mutations, an approach particularly suited for viruses due to their small genomes. Here, we used this technique to measure the fitness effect of 100 single-nucleotide substitutions in the bacteriophage f1, a filamentous single-strand DNA virus. We found that approximately one-fifth of all mutations are lethal. Viable ones reduced fitness by 11% on average and were accurately described by a log-normal dist…
Cancer growth dynamics: stochastic models and noise induced effects
2009
In the framework of the Michaelis‐Menten (MM) reaction kinetics, we analyze the cancer growth dynamics in the presence of the immune response. We found the coexistence of noise enhanced stability (NES) and resonant activation (RA) phenomena which act in an opposite way with respect to the extinction of the tumor. The role of the stochastic resonance (SR) in the case of weak cancer therapy has been analyzed. The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a Monte Carlo approach. We analyzed the effects of a targeted therapy on the evolutionary dynamics of normal, first‐mutant and cancerous cell populations. We show how …
Temperature dependence of spontaneous mutation rates.
2021
Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead, mutation rates depended on temperature in a U-shaped manner with increasing rates toward both temperature…
Viral Mutation Rates
2010
Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 108 to106 s/n/c for DNA viruses and from 106 to 104 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mut…
Extremely high mutation rate of a hammerhead viroid
2009
Supporting information (Materials and methods, figs. S1-S3, suppl. references) available at: http://www.sciencemag.org/cgi/data/323/5919/1308/DC1/1
Correlation between mutation rate and genome size in riboviruses: mutation rate of bacteriophage Qβ.
2013
Abstract Genome sizes and mutation rates covary across all domains of life. In unicellular organisms and DNA viruses, they show an inverse relationship known as Drake’s rule. However, it is still unclear whether a similar relationship exists between genome sizes and mutation rates in RNA genomes. Coronaviruses, the RNA viruses with the largest genomes (∼30 kb), encode a proofreading 3′ exonuclease that allows them to increase replication fidelity. However, it is unknown whether, conversely, the RNA viruses with the smallest genomes tend to show particularly high mutation rates. To test this, we measured the mutation rate of bacteriophage Qβ, a 4.2-kb levivirus. Amber reversion-based Luria–D…