Search results for "Mutation"

showing 10 items of 2830 documents

The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild

2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.

0106 biological sciencesConservation geneticsMalegenotype phenotype correlationGorillaComputingMilieux_LEGALASPECTSOFCOMPUTINGarginineGenoma humà01 natural sciencesOculocutaneous albinism type 4single nucleotide polymorphismAlbinismegenetic variabilityGorillaInbreedinggenetic conservationGenetics0303 health sciencesGenomebiologyarticlecopy number variationHigh-Throughput Nucleotide SequencingSLC45A2 geneGenomicszygosityOculocutaneous albinismFloquet de neu (Goril·la)AlbinismFemaleBiotechnologyamino acid substitutionResearch ArticleSLC45A2Gorilla gorilla gorillaHeterozygoteAlbinismMolecular Sequence Datacomparative genomic hybridizationgene sequenceConservation010603 evolutionary biology03 medical and health sciencesWestern lowland gorillabiology.animalmedicineGeneticsheterozygosityAnimalsAmino Acid Sequencegene030304 developmental biologygene identificationWhole genome sequencingnonhumanGorilla gorillaMembrane Transport ProteinsSequence Analysis DNA15. Life on landbiology.organism_classificationmedicine.diseaseGenòmicaData_GENERALMutationbiology.proteinGenèticaoculocutaneous albinismglycineMicrosatellite RepeatsBMC Genomics
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines

2004

Abstract Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differen…

0106 biological sciencesDNA PlantGenotypeArabidopsisDrug ResistanceDrug resistance[SDV.GEN] Life Sciences [q-bio]/GeneticsGenes Plant01 natural sciences03 medical and health sciencesGene FrequencyArabidopsisGenotypeGeneticsAlleleGeneCrosses GeneticComputingMilieux_MISCELLANEOUSGenes Dominant030304 developmental biologyDominance (genetics)Genetics[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesAcetolactate synthaseBase SequencebiologyHerbicidesbiology.organism_classificationPhenotypeMutationbiology.proteinUnderdominanceResearch Article010606 plant biology & botany
researchProduct

Phylogeography and Molecular Evolution of Potato virus Y

2012

Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVYO, PVYN and PVYC) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used Bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and…

0106 biological sciencesEvolutionary GeneticsAmino-acid sitesSelective constraintsPotyviruslcsh:Medicine01 natural sciencesAmino-Acid SitesRecombinant strainPlant RNA virusesNegative selectionMaximum-Likelihoodlcsh:Sciencepathologie végétaleSelective ConstraintsPhylogenyGenetics0303 health sciencesCoat proteinMultidisciplinaryNatural selectionVegetal BiologybiologyEcologyGenetic-structurePotyvirusfood and beveragesEuropePhylogeneticsVenous necrosisPhylogeographyPotato virus YBiogeographyVenous NecrosisSequence AnalysisResearch ArticlePlant RNA VirusesGenome ViralMicrobiologyEvolution Molecular03 medical and health sciencesGenetic-StructureMolecular evolutionVirologyMosaic-virus[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyEvolutionary SystematicsBiology030304 developmental biologySolanum tuberosumGenetic diversityEvolutionary BiologyMosaic virusHost (biology)Maximum-likelihoodlcsh:RComputational Biologyvirus à de la pomme de terreBayes Theoremlégumebiology.organism_classificationMutational analysisMosaic-VirusMutational AnalysisEvolutionary EcologyRecombinant StrainNorth Americalcsh:QBiologie végétalePopulation Genetics010606 plant biology & botany
researchProduct

THE DISTRIBUTION OF MUTATIONAL FITNESS EFFECTS OF PHAGE φX174 ON DIFFERENT HOSTS

2012

Adaptation depends greatly on the distribution of mutation fitness effects (DMFE), but the phenotypic expression of mutations is often environment dependent. The environments faced by multihost pathogens are mostly governed by their hosts and therefore measuring the DMFE on multiple hosts can inform on the likelihood of short-term establishment and longer term adaptation of emerging pathogens. We explored this by measuring the growth rate of 36 mutants of the lytic bacteriophage φX174 on two host backgrounds, Escherichia coli (EcC) and Salmonella typhimurium (StGal). The DMFE showed higher mean and variance on EcC than on StGal. Most mutations were either deleterious or neutral on both host…

0106 biological sciencesGenetics0303 health sciencesMutationbiologyFitness landscapeGenetic Fitnessmedicine.disease_causebiology.organism_classification010603 evolutionary biology01 natural sciencesBacteriophage03 medical and health sciencesLytic cycleGenotypeGeneticsmedicineAdaptationGeneral Agricultural and Biological SciencesGeneEcology Evolution Behavior and Systematics030304 developmental biologyEvolution
researchProduct

SHAPE MATTERS: EFFECT OF POINT MUTATIONS ON RNA SECONDARY STRUCTURE

2013

A suitable model to dive into the properties of genotype-phenotype landscapes is the relationship between RNA sequences and their corresponding minimum free energy secondary structures. Relevant issues related to molecular evolvability and robustness to mutations have been studied in this framework. Here, we analyze the one-mutant neighborhood of the predicted secondary structure of 46 different RNAs, including tRNAs, viroids, larger molecules such as Hepatitis-δ virus, and several random sequences. The probability distribution of the effect of point mutations in linear structural motifs of the secondary structure is well fit by Pareto or Lognormal probability distributions functions, indep…

0106 biological sciencesGenetics0303 health sciencesPoint mutationRNARobustness (evolution)Computational biologyBiology010603 evolutionary biology01 natural sciencesNucleic acid secondary structureEvolvability03 medical and health sciencesControl and Systems EngineeringProbability distributionStructural motifRNA secondary structure sequence-structure map mutational effects linear motifsProtein secondary structure030304 developmental biologyAdvances in Complex Systems
researchProduct

Mutations in voltage-gated sodium channels from pyrethroid resistant salmon lice (Lepeophtheirus salmonis)

2018

BACKGROUND Parasitic salmon lice (Lepeophtheirus salmonis) cause high economic losses in Atlantic salmon farming. Pyrethroids, which block arthropod voltage-gated sodium channels (Nav 1), are used for salmon delousing. However, pyrethroid resistance is common in L. salmonis. The present study characterized Nav 1 homologues in L. salmonis in order to identify channel mutations associated to resistance, called kdr (knockdown) mutations. RESULTS Genome scans identified three L. salmonis Nav 1 homologues, LsNav 1.1, LsNav 1.2 and LsNav 1.3. Arthropod kdr mutations map to specific Nav 1 regions within domains DI-III, namely segments S5 and S6 and the linker helix connecting S4 and S5. The above …

0106 biological sciencesGeneticsMutationGene knockdownPyrethroidbiologySodium channelGeneral Medicinebiology.organism_classificationmedicine.disease_cause01 natural sciencesGenome010602 entomologychemistry.chemical_compoundDeltamethrinchemistryLepeophtheirusInsect Scienceparasitic diseasesmedicineAgronomy and Crop ScienceAllele frequency010606 plant biology & botanyPest Management Science
researchProduct

p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants

2020

p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the…

0106 biological sciencesGenotypePhysiologyGlycosylphosphatidylinositolsMutantArabidopsisGolgi ApparatusPlant ScienceEndoplasmic Reticulum01 natural sciencessymbols.namesakeArabidopsisGeneticsArabidopsis thalianaResearch ArticlesbiologyChemistryArabidopsis ProteinsVesicleEndoplasmic reticulumCell MembraneGenetic VariationMembrane ProteinsCOPIGolgi apparatusbiology.organism_classificationCell biologyProtein TransportMembrane proteinMutationsymbols010606 plant biology & botany
researchProduct

Mutations associated with pyrethroid resistance in Varroa mite, a parasite of honey bees, are widespread across the United States.

2021

BACKGROUND Managed honey bees are key pollinators of many crops and play an essential role in the United States food production. For more than ten years, beekeepers in the United States have been reporting high rates of colony losses. One of the drivers of these losses is the parasitic mite Varroa destructor. Maintaining healthy honey bee colonies in the United States is dependent on a successful control of this mite. The pyrethroid tau-fluvalinate (Apistan®) was among the first synthetic varroacides registered in the United States. With over 20 years of use, mites resistant to Apistan® have emerged, and so it is unsurprising that treatment failures have been reported. Resistance to tau-flu…

0106 biological sciencesIntegrated pest managementApiaryVarroidaeVoltage-Gated Sodium Channels01 natural sciencesparasitic diseasesPyrethrinsMiteAnimalsParasitesbiologybusiness.industryKnockdown resistanceGeneral MedicineHoney beeBeesbiology.organism_classificationUnited StatesBiotechnology010602 entomologyInsect ScienceVarroa destructorMutationVarroaPEST analysisbusinessAgronomy and Crop Science010606 plant biology & botanyPest management scienceReferences
researchProduct

Diversifying selection on MHC class I in the house sparrow (Passer domesticus).

2009

10 pages; International audience; Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host-parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows (Passer domesticus) in France. To infer the nature of the selection, we comp…

0106 biological sciencesMESH : Gene FlowMESH: Selection (Genetics)MESH: GeographyGenes MHC Class IMESH: Genetic MarkersBalancing selectionMESH : Microsatellite Repeats[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesmicrosatellitesMESH: SparrowsMESH : Genetic MarkersMESH: AnimalsMESH: Genetic VariationMESH: Evolution MolecularGenetics0303 health scienceseducation.field_of_studyGeographybiology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH : GeographyMESH: Genes MHC Class I[ SDE.MCG ] Environmental Sciences/Global Changes[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMate choiceMESH: Stochastic ProcessesMHC class IMESH : MutationSparrowsGene FlowGenetic MarkersMESH: Mutationbalancing selection[SDE.MCG]Environmental Sciences/Global ChangesPopulationMESH : Genetic DriftMESH: Genetics Populationchemical and pharmacologic phenomenaMESH : Stochastic ProcessesMajor histocompatibility complex010603 evolutionary biologyMESH : Genes MHC Class IEvolution Molecular03 medical and health sciencesMESH : Genetic VariationMHC class IGeneticsPasser domesticusMESH : Selection (Genetics)AnimalsMESH : Evolution MolecularSelection GeneticMESH: Genetic DrifteducationAllelesMESH: Gene FlowEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologyLocal adaptationIsolation by distanceStochastic Processes[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyhouse sparrowMESH: AllelesGenetic DriftGenetic Variationdiversifying selectionPasser domesticus.[ SDV.GEN.GA ] Life Sciences [q-bio]/Genetics/Animal geneticsMESH : Genetics Population[SDE.ES]Environmental Sciences/Environmental and Society[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsGenetics PopulationEvolutionary biologyMutationbiology.proteinMESH: Microsatellite RepeatsMESH : AnimalsMESH : Sparrows[SDE.BE]Environmental Sciences/Biodiversity and EcologyMESH : Alleles[ SDE.ES ] Environmental Sciences/Environmental and SocietyMicrosatellite Repeats
researchProduct