Search results for "Myc"

showing 10 items of 3773 documents

Plant genes involved in arbuscular mycorrhiza formation and functioning

2002

Knowledge about that part of the plant genome involved in the establishment and functioning of the arbuscular mycorrhizal (AM) symbiosis is important for the basic understanding of this symbiosis. It is also essential for a ‘genes to the field’ approach based on the identification and exploitation of genes that could be central to developing sustainable plant production systems in the future.

0106 biological sciences0303 health sciencesbiologybusiness.industry[SDV]Life Sciences [q-bio]biology.organism_classification01 natural sciencesGenomeBiotechnologyArbuscular mycorrhiza[SDV] Life Sciences [q-bio]03 medical and health sciencesSymbiosisBotanyREPONSE DE LA PLANTEIdentification (biology)Arbuscular mycorrhizalbusinessPlant genesGeneFunctional genomicsComputingMilieux_MISCELLANEOUS030304 developmental biology010606 plant biology & botany
researchProduct

Colonization of Plant Roots by Pseudomonads and AM Fungi: A Dynamic Phenomenon, Affecting Plant Growth and Health

2008

Because of their enormously large range of plant hosts and role in plant nutrition, arbuscular mycorrhizal (AM) fungi represent an extraordinarily fascinating field of study. Plant growth promotion effects by AM fungi were described as early as 1900 (Sthal 1900) and several data obtained in the second half of the last century support the idea that these microrganisms can act as biocontrol agents (BCA). The extent of root colonization is variable in different plants and under different environmental conditions (Giovannetti and Hepper 1985). Some effects of AM colonization on plants have been reported to be dependent on the degree of root colonization, while others have not. Root exudation an…

0106 biological sciences2. Zero hunger0303 health sciencesRhizospherebiologyfungiBiological pest controlfood and beveragesRhizobacteriabiology.organism_classification01 natural sciencesArbuscular mycorrhiza03 medical and health sciencesPyrrolnitrinchemistry.chemical_compoundHorticulturechemistryBotanyColonizationMycorrhizaPhyllosphere030304 developmental biology010606 plant biology & botany
researchProduct

Plant defense responses induced by arbuscular mycorrhizal fungi

2002

Plants in their environment daily face many organisms such as fungi, bacteria, mycoplasms, viruses, nematodes, etc. Many of them are potential pathogens; in fact thousands of microorganisms are known to cause plant diseases. Despite this large number of deleterious microorganisms, most of the plants are resistant to their attack since they have developed effective mechanisms to protect themselves.

0106 biological sciences2. Zero hunger0303 health sciences[SDV]Life Sciences [q-bio]MicroorganismfungiDefence mechanismsfood and beverages15. Life on landBiologybiology.organism_classificationArbuscular mycorrhizal fungi01 natural sciences[SDV] Life Sciences [q-bio]03 medical and health sciencesBotanyREPONSE DE LA PLANTEPlant defense against herbivoryComputingMilieux_MISCELLANEOUSBacteria030304 developmental biology010606 plant biology & botany
researchProduct

Arbuscular mycorrhizal fungi and micropropagation of high value crops

2002

Micropropagation has established its position as a way of propagating large numbers of uniform plants. For some plant species that are difficult to propagate by seeds or by conventional cuttings, this technique provides the only possible way of producing high quality plants. Micropropagation is widely used for propagation of high value crops like ornamentals, fruits, vegetables, plantation crops and spices (Vestberg and Estaun 1994). The micropropagation industry was growing fast in Europe up to 1992 (O’Riordain 1992) but after that the micropropagation industry seems to have stabilized its position although a slight increase in production of microplants was still recorded for the period 19…

0106 biological sciences2. Zero hunger[SDV]Life Sciences [q-bio]04 agricultural and veterinary sciences15. Life on landBiologyArbuscular mycorrhizal fungi01 natural sciences[SDV] Life Sciences [q-bio]HorticultureCuttingPrunusMicropropagationAgronomyOrnamental plant040103 agronomy & agriculturePlant species0401 agriculture forestry and fisheriesComputingMilieux_MISCELLANEOUS010606 plant biology & botany
researchProduct

Prevention of Fusarium head blight infection and mycotoxins in wheat with cut-and-carry biofumigation and botanicals

2020

Fusarium head blight (FHB) is a devastating fungal disease of wheat worldwide causing yield losses and grain contamination with mycotoxins that jeopardise food and feed safety. Field experiments using mulch layers or botanicals were conducted in two consecutive years to investigate prevention measures with the potential to suppress FHB and reduce mycotoxins in wheat. We simulated a system with high disease pressure, i.e. maize-wheat rotation under no-tillage, by applying maize residues artificially inoculated with Fusarium graminearum in field plots after wheat sowing. For mulch layers, a novel cut-and-carry biofumigation approach was employed. Cover crops grown in separate fields were harv…

0106 biological sciences2. Zero hungerbiologyCrop yieldBrassicaSoil ScienceSowing04 agricultural and veterinary sciencesbiology.organism_classificationFusarium graminearum; Mycotoxin; Wheat; Mustard; Clover01 natural scienceschemistry.chemical_compoundAgronomychemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesCover cropMycotoxinAgronomy and Crop ScienceZearalenoneMulchWhite mustard010606 plant biology & botanyField Crops Research
researchProduct

Phytotoxic Metabolites Isolated from Neufusicoccum batangarum, the Causal Agent of the Scabby Canker of Cactus Pear (Opuntia ficus-indica L.)

2020

Six phytotoxins were obtained from the culture filtrates of the ascomycete Neofusicoccum batangarum, the causal agent of the scabby canker of cactus pear (Opuntia ficus-indica L.) in minor Sicily islands. The phytotoxins were identified as (&minus

0106 biological sciences<i>neofusicoccum batangarum</i>Health Toxicology and MutagenesisOpuntia ficuslcsh:MedicineBiologyToxicology01 natural sciencesArticlephytotoxinsAscomycotamedicineNuclear Magnetic Resonance BiomolecularPlant DiseasesCankerPEARphytotoxinMolecular Structure010405 organic chemistryHost (biology)lcsh:ROpuntiaNeofusicoccum batangarumMycotoxinsmedicine.diseaseNeofusicoccum batangarum0104 chemical sciencesHorticultureFruitCactuscactus pearPhytotoxicityscabby cankers010606 plant biology & botanyToxins
researchProduct

Activation of the plant plasma membrane H+ -ATPase. Is there a direct interaction between lysophosphatidylcholine and the C-terminal part of the enzy…

1996

The antagonistic effects of the fungal toxin beticolin-1 and of L-alpha-lysophosphatidylcholine (lysoPC) were investigated on the plasma membrane H+-ATPase of the plant Arabidopsis thaliana (isoform 2) expressed in yeast, using both wild-type enzyme (AHA2) and C-terminal truncated enzyme (aha2delta92). Phosphohydrolytic activities of both enzymes were inhibited by beticolin-1, with very similar 50% inhibitory concentrations, indicating that the toxin action does not involve the C-terminal located autoinhibitory domain of the proton pump. Egg lysoPC, a compound that activates the H+-ATPase by a mechanism involving the C-terminal part of the protein, was found to be able to reverse the inhibi…

0106 biological sciencesATPaseArabidopsismedicine.disease_cause01 natural sciencesBiochemistrychemistry.chemical_compoundStructural BiologyArabidopsis thalianaComputingMilieux_MISCELLANEOUSchemistry.chemical_classification0303 health sciencesbiologyPlantsRecombinant ProteinsIsoenzymesBeticolinProton-Translocating ATPasesLysophosphatidylcholineMembraneBiochemistryPlasma membrane H+-ATPase activationGene isoformAutoinhibitory domainDetergentsBiophysicsSaccharomyces cerevisiae[SDV.BC]Life Sciences [q-bio]/Cellular BiologyHeterocyclic Compounds 4 or More RingsStructure-Activity Relationship03 medical and health sciencesGeneticsmedicine[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular Biology030304 developmental biologyBinding SitesToxinCell MembraneLysophosphatidylcholinesCell BiologyMycotoxinsbiology.organism_classificationYeastEnzyme Activationl-α-LysophosphatidylcholineEnzymechemistryLiposomesbiology.protein010606 plant biology & botany
researchProduct

Gaseous allyl isothiocyanate to inhibit the production of aflatoxins, beauvericin and enniatins by Aspergillus parasiticus and Fusarium poae in wheat…

2016

Abstract There is a growing concern about the presence of mycotoxins in foods, since up to 25% of cereals and cereal foods are contaminated with these compounds. Moreover, the general public is against the use of synthetic preservatives in foods and the use of natural antimicrobials in foods is a current trend. Allyl isothiocyanate (AITC) is a volatile antimicrobial derived from oriental and black mustard. The objective of this work was to evaluate the capacity of gaseous AITC in inhibiting the production of mycotoxins by Aspergillus parasiticus (aflatoxin producer) and Fusarium poae (beauvercin and enniatin producer) in wheat flour. Petri dish lids filled with 2 g of wheat flour were inocu…

0106 biological sciencesAflatoxinPreservativebiologyChemistryWheat flourNatural antimicrobial04 agricultural and veterinary sciencesMycotoxinsAllyl isothiocyanatebiology.organism_classification040401 food science01 natural sciencesAspergillus parasiticusBeauvericinFood safetychemistry.chemical_compound0404 agricultural biotechnology010608 biotechnologyFood scienceMycotoxinEnniatinMustard oilBiotechnologyFood ScienceFood Control
researchProduct

The rhizosphere of mycorrhizal plants

2002

Providing that appropriate carbon substrates are available, microbial communities are able to develop a range of activities which are crucial in maintaining a biological balance in soil (Bowen and Rovira 1999), a key issue for the sustainability of either natural ecosystems or agroecosystems (Kennedy and Smith 1995). Soil-borne microbes have a particular microhabitat in which to flourish. In particular, they are bound to the surface of soil particles or found in soil aggregates, while others interact specifically with the plant root system (Glick 1995). The root-soil interface is actually a dynamic changing environment, a microcosm where microorganisms, plant roots and soil constituents int…

0106 biological sciencesAgroecosystemRhizosphereEcology[SDV]Life Sciences [q-bio]Bulk soilMycorrhizosphere04 agricultural and veterinary sciences15. Life on landBiologyRhizobacteria01 natural sciencesSoil quality[SDV] Life Sciences [q-bio]Botany040103 agronomy & agriculture0401 agriculture forestry and fisheriesMicrocosmPlant nutritionComputingMilieux_MISCELLANEOUSCONTROLE DE MALADIES010606 plant biology & botany
researchProduct

Application of hydrolases and probiotic Pediococcus acidilactici BaltBio01 strain for cereal by-products conversion to bioproduct for food/feed

2017

The aim of this study was to apply the enzymatic treatment and fermentation by Pediococcus acidilactici BaltBio01 strain for industrial cereal by-products conversion to food/feed bioproducts with high amount of probiotic lactic acid bacteria (LAB). LAB propagated in potato media and spray-dried remained viable during 12months (7.0 log10 cfu/g) of storage and was used as a starter for cereal by-products fermentation. The changes of microbial profile, biogenic amines (BAs), mycotoxins, lactic acid (Lþ/D), lignans and alkylresorcinols (ARs) contents in fermented cereal by-product were analysed. Cereal by-products enzymatic hydrolysis before fermentation allows to obtain a higher count of LAB d…

0106 biological sciencesAlkylationFood HandlingHydrolases01 natural sciencesmycotoxinlaw.inventionProbioticchemistry.chemical_compoundbiogenic aminelawBioproductscereal by-productFood scienceenzymatic hydrolysiStrain (chemistry)Hydrolysisdigestive oral and skin physiologyfood and beverages04 agricultural and veterinary sciences040401 food scienceFermented FoodslignanBiogenic AminesIndustrial WasteFood ContaminationBiologyLignans0404 agricultural biotechnology010608 biotechnologyEnzymatic hydrolysisAnimalsHumansFood-Processing IndustryMycotoxinPediococcus acidilacticiMicrobial Viabilitybusiness.industryProbioticsPediococcus acidilacticiResorcinolsMycotoxinsbiology.organism_classificationAnimal FeedLatviaBiotechnologychemistryFermentationbacteriaFood AdditivesFermentationalkylresorcinolEdible GrainbusinessFood ScienceInternational Journal of Food Sciences and Nutrition
researchProduct