Search results for "N6-Methyladenosine"

showing 5 items of 5 documents

Engineering of a DNA Polymerase for Direct m6A Sequencing

2017

Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N6-methyladenosine (m6A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m6A-containing RNA prior to sequencing, since m6A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m6A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for…

0301 basic medicineAdenosineRNA-dependent RNA polymeraseDNA-Directed DNA Polymerase010402 general chemistryProtein Engineering01 natural sciencesCatalysis03 medical and health sciencesDNA polymerasesSequencing by hybridization[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYRNA polymerase IRNA MessengerPolymerasebiologyOligonucleotideN6-methyladenosineReverse Transcriptase Polymerase Chain ReactionCommunicationMultiple displacement amplificationHigh-Throughput Nucleotide Sequencing[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral ChemistryDNA MethylationRNA modificationMolecular biologyReverse transcriptaseCommunications0104 chemical sciencesSequencing by ligationenzyme engineering030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONddc:540biology.proteinepitranscriptomicsRNA Methylation
researchProduct

MODOMICS: a database of RNA modification pathways. 2017 update

2017

Abstract MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. In the current database version, we included the following new features and data: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments; new, machine-friendly system of unified abbreviations for modified nucleoside names; sets of modified tRNA sequences for two bact…

0301 basic medicineRNA methylationBiologycomputer.software_genreMass Spectrometry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferEpitranscriptomicsTerminology as TopicRNA modificationDatabases GeneticGeneticsDatabase IssueHumanschemistry.chemical_classificationDatabase2'-O-methylationRNA030104 developmental biologyEnzymechemistry030220 oncology & carcinogenesisTransfer RNARNARibonucleosidesN6-MethyladenosinecomputerChromatography LiquidNucleic Acids Research
researchProduct

Ythdf is a N6‐methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in Drosophila

2021

Abstract N6‐methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6A alters fly behavior, albeit the underlying molecular mechanism and the role of m6A during nervous system development have remained elusive. Here we find that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6A reader in the nervous system,…

Nervous systemCancer ResearchAdenosineMessengerRNA-binding proteinBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyFragile X Mental Retardation Protein03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineAnimalsDrosophila ProteinsFmr1; RNA modification; Ythdf; m6A; nervous systemRNA MessengerFmr1Molecular BiologyDrosophila030304 developmental biologyNeurons0303 health sciencesGeneral Immunology and MicrobiologyProteomics and Chromatin BiologyGeneral Neurosciencenervous systemRNA-Binding ProteinsTranslation (biology)Articlesm6AProtein Biosynthesis & Quality ControlRNA modificationYthdfbiology.organism_classificationRNA BiologyFMR1Fmr1; RNA modification; Ythdf; m6A; nervous system; Adenosine; Animals; Axons; Drosophila Proteins; Drosophila melanogaster; Fragile X Mental Retardation Protein; Neurons; RNA Messenger; RNA-Binding ProteinsAxonsCell biologyDrosophila melanogastermedicine.anatomical_structurechemistryMushroom bodiesRNATarget mrnaN6-Methyladenosine030217 neurology & neurosurgeryNeuroscienceThe EMBO Journal
researchProduct

An epigenetic ‘extreme makeover’: the methylation of flaviviral RNA (and beyond)

2020

Beyond their high clinical relevance worldwide, flaviviruses (comprising dengue and Zika viruses) are of particular interest to understand the spatiotemporal control of RNA metabolism. Indeed, their positive single-stranded viral RNA genome (vRNA) undergoes in the cytoplasm replication, translation and encapsidation, three steps of the flavivirus life cycle that are coordinated through a fine-tuned equilibrium. Over the last years, RNA methylation has emerged as a powerful mechanism to regulate messenger RNA metabolism at the posttranscriptional level. Not surprisingly, flaviviruses exploit RNA epigenetic strategies to control crucial steps of their replication cycle as well as to evade sen…

RNA methylationvirusesGenome ViralReviewDengue virusVirus Replicationmedicine.disease_causeMethylationEpigenesis GeneticDengue feverZika virus03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineAnimalsHumansEpigeneticsMolecular Biology030304 developmental biologyGenetics0303 health sciencesbiologyZika Virus InfectionFlavivirusRNAZika VirusCell Biologybiochemical phenomena metabolism and nutritionmedicine.diseasebiology.organism_classificationFlaviviruschemistry030220 oncology & carcinogenesisRNA ViralN6-MethyladenosineRNA Biology
researchProduct

N6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice

2021

Appropriately responding to stressful events is essential for maintaining health and well-being of any organism. Concerning social stress, the response is not always as straightforward as reacting to physical stressors, e.g., extreme heat, and thus has to be balanced subtly. Particularly, regulatory mechanisms contributing to gaining resilience in the face of mild social stress are not fully deciphered yet. We employed an intrinsic social hierarchy stress paradigm in mice of both sexes to identify critical factors for potential coping strategies. While global transcriptomic changes could not be observed in male mice, several genes previously reported to be involved in synaptic plasticity, l…

Social stressMethyltransferase complexbehaviorQH301-705.5sex differenceStressorCell BiologyBiologydominancechemistry.chemical_compoundtranscriptomicschemistryCorticosteroneepigenetic modificationSynaptic plasticityChronic stressmethyltransferaseMRNA methylationN6-MethyladenosineBiology (General)NeuroscienceDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct