Search results for "NANOCOMPOSITES"
showing 10 items of 206 documents
Bimetallic Intersection in PdFe@FeO x ‐C Nanomaterial for Enhanced Water Splitting Electrocatalysis
2022
Supported Fe-doped Pd-nanoparticles (NPs) are prepared via soft transformation of a PdFe-metal oraganic framework (MOF). The thus synthesized bimetallic PdFe-NPs are supported on FeO@C layers, which are essential for developing well-defined and distributed small NPs, 2.3 nm with 35% metal loading. They are used as bifunctional nanocatalysts for the electrocatalytic water splitting process. They display superior mass activity for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), both in alkaline and acid media, compared with those obtained for benchmarking platinum HER catalyst, and ruthenium, and iridium oxide OER catalysts. PdFe-NPs also exhibit outstanding sta…
Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid)
2013
Poly(lactic acid) (PLA) is melt mixed with polyamide 11 (PA11) to obtain a heat-resistant fully bio-based blend with PLA as the dominant component. The goal is achieved by adding small amounts of organoclay (OMMT), which is used to manipulate the blend microstructure. The selective positioning of the OMMT inside the PA11 and at the PLA/PA11 interface turns the blend morphology from drop/matrix into co-continuous at high PLA content (70 wt%). The OMMT-rich PA11 framework that interpenetrates the major PLA phase effectively contributes to bear stresses, and the nanocomposite blend keeps its structural integrity up to ≈160 °C, i.e., about 100 °C above the PLA glass transition.
Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors
2021
Uncontrolled cell proliferation is a hallmark of cancer as a result of rapid and deregulated progression through the cell cycle. The inhibition of cyclin-dependent kinases (CDKs) activities is a promising therapeutic strategy to block cell cycle of tumor cells. In this work we reported a new example of nanocomposites based on halloysite nanotubes (HNTs)/pyrazolo[3,4-d]pyrimidine derivatives (Si306 and Si113) as anticancer agents and CDK inhibitors. HNTs/Si306 and HNTs/Si113 nanocomposites were synthesized and characterized. The release kinetics were also investigated. Antitumoral activity was evaluated on three cancer cell lines (HeLa, MDA-MB-231 and HCT116) and the effects on cell cycle ar…
Fluorescent Boron Oxide Nanodisks as Biocompatible Multi-messenger Sensors for Ultrasensitive Ni$^{2+}$ Detection
2023
Boron-based nanocomposites are very promising for a wide range of technological applications, spanning from microelectronics to nanomedicine. A large variety of B-based nanomaterials has been already observed, such as borospherene, B nanotubes and nanoparticles, and boron nitride nanoparticles. However, their fabrication usually involves toxic precursors or leads to very low yields or small boron atom concentration. In this work, we report the synthesis of nanometric B$_{2}$O$_{3}$ nanodisks, a family of nanomaterials with a quasi-2D morphology capable of intense fluorescence in the visible range. Such as boron-based nanomaterial, which we synthesized by pulsed laser ablation of a boron tar…
Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites
2016
In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…
Transition to Reinforced State by Percolating Domains of Intercalated Brush-Modified Cellulose Nanocrystals and Poly(butadiene) in Cross-Linked Compo…
2013
The classic nanocomposite approach aims at percolation of low fraction of exfoliated individual reinforcing nanoscale elements within a polymeric matrix. By contrast, many of the mechanically excellent biological nanocomposites involve self-assembled and space-filled structures of hard reinforcing and soft toughening domains, with high weight fraction of reinforcements. Here we inspect a new concept toward mimicking such structures by studying whether percolation of intercalated domains consisting of alternating rigid and reinforcing, and soft rubbery domains could allow a transition to a reinforced state. Toward that, we present the functionalization of rigid native cellulose nanocrystals …
Micro/nanostructured thin films : synthesis by ALD of composites associating TiO2 inverse opals and gold nanoparticles for photocatalysis applications
2021
The aim of this work was to improve the photocatalytic properties of titanium dioxide (TiO2) thin films, a semiconductor that is widely used for photocatalysis applications, particularly for the treatment of polluted water. For this purpose, two complementary approaches were studied: increasing the surface area available for photocalatytic reactions and coupling between TiO2 and gold nanoparticles.. For the first approach, TiO2 thin films with different morphological structures were fabricated by Atomic Layer Deposition: dense and porous flat films, and inverse opals films.In order to evaluate photocatalytic activity of the different films, the degradation of methylene blue in aqueous solut…
Enhanced thermoelectric performance of chalcopyrite nanocomposite via co-milling of synthetic and natural minerals
2020
Chalcopyrite CuFeS2 was shown to be a promising thermoelectric material. Considering thermoelectric efficiency, its relatively high and temperature weakly dependent power factor, economic affordability and ecological benignity is counterbalanced by a high lattice thermal conductivity. Thus it is highly desirable to lower the thermal conductivity of chalcopyrite thermoelectric material without deterioration of other thermoelectric characteristics. In our study, we demonstrate that mechanosynthesis followed by appropriate sintering enables to prepare such nanostructured ceramics with a favourable thermoelectric response. Our study shows that mechanosynthesis is a low-cost technological route …
Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites
2012
The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were pre- pared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocompos- ites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS ma…
Durability of advanced nanocomposites based on polyethylene oxide and nanodiamonds
2016
Nanodiamonds nanoparticles (NDs) are amongst the most promising materials for multifunctional nanocomposites for various applications