Search results for "NANOCOMPOSITES"

showing 10 items of 206 documents

The impact of temperature on electrical properties of polymer-based nanocomposites

2020

This work was supported by National Research Foundation of Ukraine, project 2020.02/0217. IK would also like to thank VIAA, State Education Development Agency for Latvian state fellowship. HK would like to thank Ministry of Education and Science of Ukraine, project for young researchers No. 0119U100435. In addition, SP and AAP are thankful for financial support from Latvian Council of Science via grant lzp-2018/2-0083. HK and AAP are grateful for the support from the COST Action CA17126.

010302 applied physicschemistry.chemical_classificationRange (particle radiation)Materials scienceThin layersNanocompositePhysics and Astronomy (miscellaneous)General Physics and Astronomymulti-walled carbon nanotubesPolymerCarbon nanotube7. Clean energy01 natural scienceslaw.inventionpolymer based nanocompositeschemistrylaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Composite material010306 general physicslow-temperature hysteresisLow Temperature Physics
researchProduct

Durability of Biodegradable Polymer Nanocomposites

2021

Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the…

Absorption of waterNanocompositeMaterials sciencePolymers and PlasticsPolymer nanocompositeOrganic chemistryGeneral ChemistryReviewBiodegradationBiodegradable polymerDurabilitybiodegradationcreepPolyestermodellingCommodity plasticsQD241-441biodegradable polymersenvironmental ageingnanocompositesdurabilityComposite materialPolymers
researchProduct

Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating

2020

We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-cla…

AdultNanotubeMaterials scienceUltraviolet RaysRadiation-Protective Agentshalloysite nanotubes02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHalloysiteNanocompositesColloidCoatingKeratinHumansGeneral Materials SciencecompositekeratinSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationNanotubesNanocompositeintegumentary system021001 nanoscience & nanotechnologyhair treatment0104 chemical sciencesIsoelectric pointchemistryChemical engineeringUV-protective coatingengineeringClayKeratinsFemale0210 nano-technologyResearch ArticleHairProtein adsorptionACS Applied Materials & Interfaces
researchProduct

Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification

2015

Abstract Graphene/ionic liquids nanocomposite gels were synthesized by an electrochemical etching approach and fully characterized under a morphological and structural point of view. For this purpose, several analytical techniques were applied, as HR-TEM/EDX (High Resolution-Transmission Electron Microscopy/Energy Dispersive X-Ray Analysis); FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis); XPS (X-Ray Photoelectron Spectroscopy); FT-IR (Fourier Transform-Infrared Spectroscopy) and electrochemical techniques. After the characterization study, nanocomposite-gel paste electrodes were assembled, exhibiting a selective and specific detection toward the ca…

Analytical chemistrySurfaces Coatings and FilmAnti-oxidant agentsCondensed Matter PhysicAnti-oxidant agentIonic liquidElectrochemistrylaw.inventionNanocompositeschemistry.chemical_compoundX-ray photoelectron spectroscopylawgraphene Ionic liquids; nanocomposites; electrochemistry; caffeic acid; anti-oxidant agentsMaterials ChemistryElectrochemistryMoleculeElectrical and Electronic EngineeringInstrumentationSettore CHIM/02 - Chimica FisicaMaterials Chemistry2506 Metals and AlloySettore CHIM/03 - Chimica Generale e InorganicaDetection limitCaffeic acidNanocompositeNanocompositeGrapheneElectronic Optical and Magnetic MaterialMetals and AlloysCondensed Matter Physicsgraphene Ionic liquidsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonic liquidschemistryChemical engineeringIonic liquidElectrode2506Graphene
researchProduct

Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition

2010

Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…

AnataseMaterials scienceSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiNanotechnologyCathodoluminescenceChemical vapor depositionNANOWIRESNANOSTRUCTURESZN-DOPINGTITANIA; ELECTROSPINNING; NANOFIBERS; CHEMICAL VAPOUR DEPOSITION ZN-DOPINGROUTEXPSGeneral Materials ScienceMetalorganic vapour phase epitaxyZINC-OXIDENanocompositeDopantELECTROSPINNINGPHOTOCATALYTIC ACTIVITYGeneral ChemistryOPTICAL-PROPERTIESCondensed Matter PhysicsNANOCOMPOSITESElectrospinningCHEMICAL VAPOUR DEPOSITIONNanofiberTITANIAPHOTOLUMINESCENCESENSITIZED SOLAR-CELLSSENSITIZED SOLAR-CELLS; ZINC-OXIDE; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOCOMPOSITES; NANOWIRES; ROUTE; XPSNANOFIBERS
researchProduct

Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

2016

In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…

BiocideMaterials scienceScanning electron microscopeKineticsAntimicrobial activity; Ciprofloxacin; Drug release; Graphene nanoplatelets (GnPs); Nanocomposites; Poly(lactic acid) (PLA); Materials Science (all)02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslcsh:TechnologyArticlepoly(lactic acid) (PLA)ciprofloxacinnanocompositesGeneral Materials ScienceComposite materiallcsh:Microscopydrug releaselcsh:QC120-168.85NanocompositeNanocompositeantimicrobial activitylcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyAntimicrobialBiodegradable polymerCopolyestergraphene nanoplatelets (GnPs)0104 chemical sciencesChemical engineeringnanocomposites; graphene nanoplatelets (GnPs); poly(lactic acid) (PLA); antimicrobial activity; drug release; ciprofloxacinlcsh:TA1-2040engineeringlcsh:Descriptive and experimental mechanicsMaterials Science (all)Biopolymerlcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials; Volume 9; Issue 5; Pages: 351
researchProduct

Bionanocomposites Based on Pectins and Halloysite Nanotubes: from the Structure to the Properties

2010

Bionanocomposites Nanotubes pectin
researchProduct

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

2019

[EN] Based on the unique ability of defibrillated sepiolite (SEP) to form stable and homogeneous colloidal dispersions of diverse types of nanoparticles in aqueous media under ultrasonication, multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the biocomposite: HNTs act as nanocontainers for bioactive species, GNPs provide electrical conductivity (enhanced by doping with MWCNTs) and, the CHI polymer matrix introduces mechanical and membrane pr…

BionanocompositesElectrochemical deviceMaterials scienceHalloysite nanotubeSepioliteGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technologyhalloysite nanotubesengineering.material010402 general chemistrylcsh:Chemical technology01 natural sciencesHalloysitelcsh:TechnologyFull Research PaperChitosanchemistry.chemical_compoundBionanocompositeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringlcsh:Sciencechemistry.chemical_classificationHalloysite nanotubeslcsh:Tbionanocompositeselectrochemical devicesNanocontainerPolymer021001 nanoscience & nanotechnologycarbon nanostructuresCarbon nanostructureslcsh:QC1-9990104 chemical sciencesCarbon nanostructureNanoscienceMembranechemistryElectrochemical devicesengineeringlcsh:QBiocomposite0210 nano-technologyBiosensorlcsh:Physics
researchProduct

Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites

2018

[EN] A series of bionanocomposite films based on chitosan, reinforced with chitin nanocrystals, were developed, and assessed in terms of dielectric behaviour and conductivity by using an experimental methodology that allows avoiding the conductivity contribution and the exclusion of contact and interfacial polarization effects. The dielectric relaxations at low and high frequency and temperatures were modeled by Havriliak-Negami functions. Below the glass transition temperature (Tg), the gamma and beta relaxations were observed, which were related to intramolecular and non-cooperative segmental movements. At higher temperatures, an intermolecular and cooperative macromolecular movement, rel…

BionanocompositesSolucions polimèriquesMaterials scienceMaterial testingIonic bonding02 engineering and technologyDielectricActivation energyConductivity010402 general chemistry01 natural sciencesChitosanchemistry.chemical_compoundElectrical resistivity and conductivity[CHIM.ANAL]Chemical Sciences/Analytical chemistryComposite materialsChitosanChitosanIntermolecular forceGeneral EngineeringINGENIERIA DE LOS PROCESOS DE FABRICACION[CHIM.MATE]Chemical Sciences/Material chemistryCiència dels materials021001 nanoscience & nanotechnology0104 chemical sciencesChitin nanocrystals[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringchemistryMAQUINAS Y MOTORES TERMICOSCeramics and CompositesChitin nanocrystal0210 nano-technologyGlass transitionDielectric thermal analysis (DETA)
researchProduct

Halloysite-Based Bionanocomposites

2017

Scientific research has been invigorated by a new class of biodegradable materials as alternatives to polymers derived from fossils. Such biomaterials can also offer economic advantages because they are derived from renewable resources. Several biopolymers (gelatin, chitin, chitosan, starch, pectin, cellulose and its modified versions, etc.) have been exploited to produce films and formulations. Their use is limited because of fast degradation, predominant hydrophilic character, and, in some cases, unsatisfactory mechanical properties. However, the properties of these polymers can be improved by using inorganic fillers such as additives. Halloysite nanotube is a promising green filler for t…

BiopolymerMaterials scienceApplicationHalloysite nanotube02 engineering and technologySettore CHIM/06 - Chimica Organicaengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesHalloysitePhysicochemical propertie0104 chemical sciencesBiopolymers halloysite nanotubes HNT-biopolymers nanocomposites physicochemical properties applicationsHNT-biopolymers nanocompositeChemical engineeringengineering0210 nano-technologySettore CHIM/02 - Chimica Fisica
researchProduct