Search results for "NANOPOWDERS"

showing 8 items of 8 documents

High Activity of Brookite TiO2 Nanopowders in the Photocatalytic Abatement of Ammonia in Water

2014

Brookite NanopowdersPhotocatalysis of AmmoniaSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

CFD simulation of ZnO nanoparticle precipitation in a supercritical water synthesis reactor

2012

International audience; Continuous hydrothermal flow synthesis process has shown great advantages concerning the control of particle size and morphology through the optimization of supercritical water processing parameters. In particular, micromixing is a key issue of the process for controlling the nucleation mechanism. A Computational Fluid Dynamics (CFD) model is suggested for nanoparticle size determination using a population balance approach. Models for reaction kinetics, thermodynamics, nucleation and growth are presented. The effects of base concentration and hydrodynamics are investigated. Results show that the CFD may be valuable simulation tool for controlling the size and the sha…

CONTINUOUS HYDROTHERMAL SYNTHESISMaterials scienceFLOWGeneral Chemical EngineeringPopulationNucleationNanoparticleNanotechnologyCrystal growth02 engineering and technologyComputational fluid dynamicsVALIDATIONNANOPOWDERSMETAL-OXIDE NANOPARTICLES020401 chemical engineeringPARTICLE FORMATION0204 chemical engineeringPhysical and Theoretical Chemistryeducationeducation.field_of_studybusiness.industryFLUID-DYNAMICSAGGREGATION021001 nanoscience & nanotechnologyCondensed Matter PhysicsSupercritical fluidMicromixingChemical engineeringPOPULATION BALANCEParticle sizeCRYSTALLIZATION0210 nano-technologybusinessThe Journal of Supercritical Fluids
researchProduct

Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials

2011

International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…

Materials scienceCONTINUOUS HYDROTHERMAL SYNTHESISGeneral Chemical EngineeringNuclear engineeringOxideNanotechnology02 engineering and technologyComputational fluid dynamics010402 general chemistry7. Clean energy01 natural sciencesMIXERNanomaterialsCrystallinitychemistry.chemical_compoundNANOPOWDERSMETAL-OXIDE NANOPARTICLESNano-oxidesFluentPARTICLES[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopySupercritical waterNanomaterialsbusiness.industry[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsCFD simulationsSupercritical fluid0104 chemical sciencesPowder synthesisNANOCRYSTALSchemistryScientific methodFluent0210 nano-technologybusiness
researchProduct

Evidence for a Double Doping Regime in Nd:YAG nanopowders

2009

Nanopowders of Yttrium Aluminium Garnet doped with neodymium (Nd:YAG) were investigated by X-Ray Absorption Fine Structure (XAFS) at the Nd LIII-edge in the 1.3 - 20.8 % doping range. XANES spectra appear similar in the full range of the Nd concentration. However, a significant decrease in the white line intensity of XANES is revealed as the quantity of Nd doping ions increases. Plotting the white line intensity as a function of Nd doping ions reveals two linear trends with two different slopes, identifying a threshold value where the neodymium concentration reaches 5 at.% This experimental finding provides support for the existence of a double doping regime in Nd:YAG nanopowders.

Materials scienceMechanical EngineeringDopingAnalytical chemistrychemistry.chemical_elementNeodymiumXANESXANESSpectral lineND:YAGIonX-ray absorption fine structureNANOPOWDERSEXAFSchemistry.chemical_compoundchemistryMechanics of MaterialsYttrium aluminium garnetGeneral Materials ScienceNd:YAG EXAFS XanesAbsorption (electromagnetic radiation)Settore CHIM/02 - Chimica Fisica
researchProduct

Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation

2010

Abstract Nd:YAG nanopowders were prepared using the Pechini process with microwave irradiation ( MWs ). A reference sample was also prepared using conventional heating. XRD pattern analysis showed that nanopowder obtained by means of conventional heating and calcination for 1 h at 900 °C has a structure made up of the garnet phase together with the hexagonal phase that disappeared after two additional hours of thermal treatment. The MWs powder calcined for 1 h consists of the single garnet phase. SAXS data analysis indicated that nanoparticles are characterized by a sharp interface. TEM investigation showed crystalline particles with remarkable agglomeration in both samples, although a more…

Materials scienceMechanical EngineeringMetals and AlloysAnalytical chemistryHexagonal phaseNanoparticleThermal treatmentNd:YAG nanopowders microwave irradiation Pechini method SAXS.law.inventionMechanics of MaterialslawPhase (matter)Materials ChemistryCalcinationParticle sizeSelected area diffractionMicrowave
researchProduct

Ce:YAG nanoparticles embedded in a PMMA matrix: preparation and characterization

2010

A Ce:YAG-poly(methyl methacrylate) composite was prepared using in situ polymerization by embedding the Ce:YAG nanopowder in a blend of methyl methacrylate (MMA) and 2-methacrylic acid (MAA) monomers and activating the photopolymerization using a radical initiator. The obtained nanocomposite was yellow and transparent. Its characterization was performed using transmission electron microscopy, small angle X-ray scattering, (13)C cross-polarization magic-angle spinning nuclear magnetic resonance, and photoluminescence spectroscopy. Results showed that Ce:YAG nanoparticles are well dispersed in the polymeric matrix whose structure is organized in a lamellar shape. The luminescence properties o…

NanocompositeMaterials scienceNanoparticleSurfaces and InterfacesCe:YAG nanopowders PMMA transparent polymeric composite white LEDs.Condensed Matter Physicschemistry.chemical_compoundPhotopolymerchemistryPolymerizationMethacrylic acidChemical engineeringPolymer chemistryElectrochemistryGeneral Materials ScienceMethyl methacrylateIn situ polymerizationLuminescenceSpectroscopy
researchProduct

Photoluminescence and photocatalytic activity of zinc tungstate powders

2011

Abstract ZnWO4 powders with grain size in range 20 nm–10 µm have been synthesized by a simple combustion method and subsequent calcinations. The photocatalytic activities of powders were tested by degradation of methylene blue solution under UV light. The luminescence spectra and luminescence decay kinetics were studied and luminescence decay time dependence on average powder-grain size was obtained. The correlation between self-trapped exciton luminescence decay time and photocatalytic activity of ZnWO4 powders was shown. A model explaining the excitonic luminescence decay time correlation with photocatalytic activity was proposed.

PhotoluminescenceMaterials sciencenanopowdersPhysicsQC1-999Excitonznwo4KineticsGeneral Physics and Astronomychemistry.chemical_elementZincPhotochemistryGrain sizechemistry.chemical_compoundTungstatechemistryluminescencePhotocatalysisLuminescencephotocatalysisOpen Physics
researchProduct

Preparation of Nd:YAG Nanopowder in a Confined Environment

2007

Nanopowder of yttrium aluminum garnet (YAG, Y3Al5O12) doped with neodymium ions (Nd:YAG) was prepared in the water/cetyltrimethylammonium bromide/1-butanol/n-heptane system. Aluminum, yttrium, and neodymium nitrates were used as starting materials, and ammonia was used as a precipitating agent. Coprecipitate hydroxide precursors where thermally treated at 900 degrees C to achieve the garnet phase. The starting system with and without reactants was characterized by means of the small-angle neutron scattering technique. The system, without reactants, is constituted by a bicontinuous structure laying near the borderline with the lamellar phase region. The introduction of nitrates stabilizes th…

nanopowderswide angle x-ray scatteringAnalytical chemistrychemistry.chemical_elementMineralogyNeodymiummicroemulsionsYAG [Nd]Lamellar phasePhase (matter)transmission electron microscopyElectrochemistryGeneral Materials ScienceMicroemulsionYAG; nanopowders; syntheisi in confined environment; microemulsions; wide angle x-ray scattering; transmission electron microscopy; photoluminescence spectroscopy [Nd]Wide-angle X-ray scatteringSpectroscopySurfaces and InterfacesYttriumCondensed Matter PhysicsSmall-angle neutron scatteringchemistrysyntheisi in confined environmentphotoluminescence spectroscopyTransmission electron microscopyNdYAG microemulsion synthesis in confined environmentLangmuir
researchProduct