Search results for "NETWORK"
showing 10 items of 7718 documents
Centrality in Complex Networks with Overlapping Community Structure
2019
AbstractIdentifying influential spreaders in networks is an essential issue in order to prevent epidemic spreading, or to accelerate information diffusion. Several centrality measures take advantage of various network topological properties to quantify the notion of influence. However, the vast majority of works ignore its community structure while it is one of the main features of many real-world networks. In a recent study, we show that the centrality of a node in a network with non-overlapping communities depends on two features: Its local influence on the nodes belonging to its community, and its global influence on the nodes belonging to the other communities. Using global and local co…
Alignment Free Dissimilarities for Nucleosome Classification
2016
Epigenetic mechanisms such as nucleosome positioning, histone modifications and DNA methylation play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have shown a role of DNA sequences in recruitment of epigenetic regulators. For this reason, the use of more suitable similarities or dissimilarity between DNA sequences could help in the context of epigenetic studies. In particular, alignment-free dissimilarities have already been successfully applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles…
Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development
2020
VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of …
Tuning neural circuits by turning the interneuron knob
2017
Interneurons play a critical role in sculpting neuronal circuit activity and their dysfunction can result in neurological and neuropsychiatric disorders. To temporally structure and balance neuronal activity in the adult brain interneurons display a remarkable degree of subclass-specific plasticity, of which the underlying molecular mechanisms have recently begun to be elucidated. Grafting new interneurons to pre-existing neuronal networks allows for amelioration of circuit dysfunction in rodent models of neurological disease and can reopen critical windows for circuit plasticity. The crucial contribution of specific classes of interneurons to circuit homeostasis and plasticity in health an…
A stable brain from unstable components: Emerging concepts and implications for neural computation.
2017
Neuroscientists have often described the adult brain in similar terms to an electronic circuit board- dependent on fixed, precise connectivity. However, with the advent of technologies allowing chronic measurements of neural structure and function, the emerging picture is that neural networks undergo significant remodeling over multiple timescales, even in the absence of experimenter-induced learning or sensory perturbation. Here, we attempt to reconcile the parallel observations that critical brain functions are stably maintained, while synapse- and single-cell properties appear to be reformatted regularly throughout adult life. In this review, we discuss experimental evidence at multiple …
2020
Human movements are characterized by highly non-linear and multi-dimensional interactions within the motor system. Recently, an increasing emphasis on machine-learning applications has led to a significant contribution to the field of gait analysis, e.g., in increasing the classification performance. In order to ensure the generalizability of the machine-learning models, different data preprocessing steps are usually carried out to process the measured raw data before the classifications. In the past, various methods have been used for each of these preprocessing steps. However, there are hardly any standard procedures or rather systematic comparisons of these different methods and their im…
Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states
2017
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on: (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according with local rules that are modulated by a parameter $\kappa$. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate e…
Optogenetics: a new method for the causal analysis of neuronal networks in vivo
2012
Abstract The causal analysis of neuronal network function requires selective manipulations of genetically defined neuronal subpopulations in the intact living brain. Here, we highlight the method of optogenetics, which meets those needs. We cover methodological aspects, limitations, and practical applications in the field of neurosciences. The fundamentals of optogenetics are light-sensitive transmembrane channels and light-driven ion pumps, which can be genetically encoded, without requiring the application of exogenous cofactors. These opsins are expressed in neurons by means of viral gene transfer and cell-specific promoters. Light for stimulation can be non- or minimally invasively de…
Alterations in White Matter Network and Microstructural Integrity Differentiate Parkinson’s Disease Patients and Healthy Subjects
2019
Parkinson’s disease (PD) is a neurodegenerative disease, neuropathologically characterized by progressive loss of neurons in distinct brain areas. We hypothesize that quantifiable network alterations are caused by neurodegeneration. The primary motivation of this study was to assess the specific network alterations in PD patients that are distinct but appear in conjunction with physiological aging. 178 subjects (130 females) stratified into PD patients, young, middle-aged and elderly healthy controls (age- and sex-matched with PD patients), were analyzed using 3D-T1 magnetization-prepared rapid gradient-echo (MPRAGE) and diffusion weighted images acquired in 3T MRI scanner. Diffusion modeli…
The Pharmacology of Visual Hallucinations in Synucleinopathies
2019
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling …