Search results for "NEURAL NETWORK"

showing 10 items of 1385 documents

Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils

2018

Modeling soil-water regime and solute transport in the vadose zone is strategic for estimating agricultural productivity and optimizing irrigation water management. Direct measurements of soil hydraulic properties, i.e., the water retention curve and the hydraulic conductivity function, are often expensive and time-consuming, and represent a major obstacle to the application of simulation models. As a result, there is a great interest in developing pedotransfer functions (PTFs) that predict the soil hydraulic properties from more easily measured and/or routinely surveyed soil data, such as particle size distribution, bulk density (&rho

lcsh:Hydraulic engineeringneural networkSoil textureWater retention curvesoil water retention curve0208 environmental biotechnologyGeography Planning and DevelopmentSoil science02 engineering and technologyAquatic ScienceSiltBiochemistryAkaike criterion; Neural network; Soil water retention curve; Van Genuchten function; Biochemistry; Geography Planning and Development; Aquatic Science; Water Science and Technologyvan Genuchten functionlcsh:Water supply for domestic and industrial purposesHydraulic conductivityPedotransfer functionlcsh:TC1-978Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliWater Science and TechnologyPlanning and Developmentlcsh:TD201-500GeographySoil organic matter04 agricultural and veterinary sciences020801 environmental engineeringAkaike criterionSoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceAkaike information criterionWater
researchProduct

Optimizing artificial neural networks for the evaluation of asphalt pavement structural performance

2019

Artificial Neural Networks represent useful tools for several engineering issues. Although they were adopted in several pavement-engineering problems for performance evaluation, their application on pavement structural performance evaluation appears to be remarkable. It is conceivable that defining a proper Artificial Neural Network for estimating structural performance in asphalt pavements from measurements performed through quick and economic surveys produces significant savings for road agencies and improves maintenance planning. However, the architecture of such an Artificial Neural Network must be optimised, to improve the final accuracy and provide a reliable technique for enriching d…

lcsh:TE1-450Computer science0211 other engineering and technologies020101 civil engineering02 engineering and technology0201 civil engineeringlcsh:TG1-470lcsh:Bridge engineeringAsphalt pavementDeflection (engineering)021105 building & constructionSettore ICAR/04 - Strade Ferrovie Ed AeroportiAsphalt pavementArchitectureArtificial Neural Network (ANN); asphalt pavement; Long Term Pavement Performance (LTPP); neural network optimisation; Pavement Management System (PMS); structural performancelcsh:Highway engineering. Roads and pavementsCivil and Structural EngineeringArtificial neural network (ANN)Network architectureTraining setArtificial neural networkPavement managementBuilding and ConstructionPavement management system (PMS)Structural performanceReliability engineeringNeural network optimisationAsphaltLong term pavement performance (LTPP)Artificial neural network (ANN) Asphalt pavement Long term pavement performance (LTPP) Neural network optimisation Pavement management system (PMS) Structural performance
researchProduct

System identification via optimised wavelet-based neural networks

2003

Nonlinear system identification by means of wavelet-based neural networks (WBNNs) is presented. An iterative method is proposed, based on a way of combining genetic algorithms (GAs) and least-square techniques with the aim of avoiding redundancy in the representation of the function. GAs are used for optimal selection of the structure of the WBNN and the parameters of the transfer function of its neurones. Least-square techniques are used to update the weights of the net. The basic criterion of the method is the addition of a new neurone, at a generic step, to the already constructed WBNN so that no modification to the parameters of its neurones is required. Simulation experiments and compa…

least squares approximations nonlinear dynamical systems identification neural nets iterative methods genetic algorithmsQuantitative Biology::Neurons and CognitionArtificial neural networkNonlinear system identificationIterative methodComputer scienceSystem identificationTransfer functionWaveletSettore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryRedundancy (engineering)Electrical and Electronic EngineeringRepresentation (mathematics)InstrumentationAlgorithmIEE Proceedings - Control Theory and Applications
researchProduct

Automatic image‐based identification and biomass estimation of invertebrates

2020

Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identificat…

luokitus (toiminta)convolutional neural networkdeep learningbiodiversiteettiekosysteemit (ekologia)spidersmachine learningkoneoppiminenclassificationhyönteisethämähäkitinsectstunnistaminenbiodiversity
researchProduct

The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification

2023

In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information about the objects we are classifying, recognizing, diagnosing, etc. Traditionally, uncertainty is considered to be a problem especially in the responsible use of AI and ML tools in the smart manufacturing domain. However, in this study, we aim not to fight with but rather to benefit from the uncertainty to improve the classification performance in supervised ML. Our objective is a kind of uncertainty-driven technique to improve the performance of Convolutional Neural Netwo…

luokitus (toiminta)deep learningsyväoppiminenConvolutional Neural Networkneuroverkotepävarmuusclassification refinementmachine learningkoneoppiminenGeneral Earth and Planetary SciencesuncertaintykuvatGeneral Environmental Scienceimage classification
researchProduct

Multilayer perceptron training with multiobjective memetic optimization

2016

Machine learning tasks usually come with several mutually conflicting objectives. One example is the simplicity of the learning device contrasted with the accuracy of its performance after learning. Another common example is the trade-off that must often be made between the rate of false positive and false negative predictions in diagnostic applications. For computer programs that learn from data, these objectives are formulated as mathematical functions, each of which describes one facet of the desired learning outcome. Even functions that intend to optimize the same facet may behave in a subtly different and mutually conflicting way, depending on the task and the dataset being examined. Mul…

machine learningkoneoppiminenclassification algorithmsmemeettiset algoritmitalgoritmitmultiobjective optimizationmultilayer perceptronmemetic algorithmsneuroverkotmatemaattinen optimointineural networksluokitus
researchProduct

Node co-activations as a means of error detection : Towards fault-tolerant neural networks

2022

Context: Machine learning has proved an efficient tool, but the systems need tools to mitigate risks during runtime. One approach is fault tolerance: detecting and handling errors before they cause harm. Objective: This paper investigates whether rare co-activations – pairs of usually segregated nodes activating together – are indicative of problems in neural networks (NN). These could be used to detect concept drift and flagging untrustworthy predictions. Method: We trained four NNs. For each, we studied how often each pair of nodes activates together. In a separate test set, we counted how many rare co-activations occurred with each input, and grouped the inputs based on whether its class…

machine learningkoneoppiminenerror detectionvirheetfault toleranceneuroverkotneural networksconcept driftluotettavuusdependability
researchProduct

Performance Evaluation of EEG Based Mental Stress Assessment Approaches for Wearable Devices

2021

Mental stress has been identified as the root cause of various physical and psychological disorders. Therefore, it is crucial to conduct timely diagnosis and assessment considering the severe effects of mental stress. In contrast to other health-related wearable devices, wearable or portable devices for stress assessment have not been developed yet. A major requirement for the development of such a device is a time-efficient algorithm. This study investigates the performance of computer-aided approaches for mental stress assessment. Machine learning (ML) approaches are compared in terms of the time required for feature extraction and classification. After conducting tests on data for real-t…

machine learningreal timeArtificial Intelligencefeature extractionBiomedical Engineeringconvolutional neural networkNeurosciences. Biological psychiatry. Neuropsychiatrycomputer-aided diagnosis (CAD)stress-assessmentRC321-571Frontiers in Neurorobotics
researchProduct

Brain Functional Effects of Psychopharmacological Treatment in Major Depression: A Focus on Neural Circuitry of Affective Processing

2015

In the last two decades, neuroimaging research has reached a much deeper understanding of the neurobiological underpinnings of major depression (MD) and has converged on functional alterations in limbic and prefrontal neural networks, which are mainly linked to altered emotional processing observed in MD patients. To date, a considerable number of studies have sought to investigate how these neural networks change with pharmacological antidepressant treatment. In the current review, we therefore discuss results from a) pharmacological functional magnetic resonance imaging (fMRI) studies investigating the effects of selective serotonin or noradrenalin reuptake inhibitors on neural activation…

major depression.EmotionsEmotional processingArticleNeuroimagingbrain activitymedicineBiological neural networkAnimalsHumansPharmacology (medical)Depression (differential diagnoses)PharmacologyDepressive Disorder Majormedicine.diagnostic_testDepressionBrainMagnetic resonance imagingGeneral MedicineAntidepressantsMagnetic Resonance ImagingAntidepressive AgentsPsychiatry and Mental healthNeurologyAntidepressantNeurology (clinical)PsychologyReuptake inhibitorFunctional magnetic resonance imagingClinical psychologyCurrent Neuropharmacology
researchProduct

Convolutional Neural Network Based Sleep Stage Classification with Class Imbalance

2022

Accurate sleep stage classification is vital to assess sleep quality and diagnose sleep disorders. Numerous deep learning based models have been designed for accomplishing this labor automatically. However, the class imbalance problem existing in polysomnography (PSG) datasets has been barely investigated in previous studies, which is one of the most challenging obstacles for the real-world sleep staging application. To address this issue, this paper proposes novel methods with signal-driven and image-driven ways of noise addition to balance the imbalanced relationship in the training dataset samples. We evaluate the effectiveness of the proposed methods which are integrated into a convolut…

mallintaminenluokitus (toiminta)trainingdatabasessleep stage classificationtime-frequency imagedeep learningsyväoppiminenneuroverkotneural networksuni (lepotila)convolutional neural networksclass imbalance problemtietokannatwhite noiseunihäiriötdata augmentation2022 International Joint Conference on Neural Networks (IJCNN)
researchProduct