Search results for "NEURAL NETWORK"
showing 10 items of 1385 documents
A Flexible 4G/5G Control Platform for Fingerprint-based Indoor Localization
2019
In this paper we propose a centralized SDN platform devised to control indoor femto-cells for supporting multiple network-wide optimizations and applications. In particular, we focus on an example localization application in order to enlighten the main functionalities and potentialities of the approach. First, we demonstrate that the platform can be exploited for reconfiguring some operational procedures, based on standard signalling mechanisms, at the programmable femto-cells; these procedures enable customized logics for collecting measurements reports from mobile terminals. Second, assuming that high-density devices such as smart objects are disseminated in the controlled indoor space, w…
A web-based autonomous weather monitoring system of the town of Palermo and its utilization for temperature nowcasting
2008
Weather data are crucial to correctly design buildings and their heating and cooling systems and to assess their energy performances. In the intensely urbanized towns the effect of climatic parameters is further emphasized by the "urban heat island" phenomenon, known as the increase in the air temperature of urban areas, compared to the conditions measured in the extra-urban areas. The analysis of the heat island needs detailed local climate data which can be collected only by a dedicated weather monitoring system. The Department of Energy and Environmental Researches of the University of Palermo has built up a weather monitoring system that works 24 hours per day and makes data available i…
Joint Dynamic Resource Allocation for Coupled Heterogeneous Wireless Networks Based on Hopfield Neural Networks
2008
This paper proposes an algorithm to solve the problem of Joint Dynamic Resource Allocation in heterogeneous wireless networks. The algorithm is based on Hopfield Neural Networks to achieve fast and suboptimal solutions. The generic formulation is particularized and evaluated in an HSDPA and 802.11e WLAN coupled networks. Some illustrative simulations results are presented to evaluate the performance of the new algorithm as compared with other strategies. The obtained results confirm the validity of the proposal.
Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
2012
Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.
Distinguishing Onion Leaves from Weed Leaves Based on Segmentation of Color Images and a BP Neural Network
2006
A new algorithm to distinguish onion leaves from weed leaves in images is suggested. This algorithm is based on segmentation of color images and on BP neural network. It includes: discarding soil for conserving only plants in the image, color image segmentation, merging small regions by analyzing the frontier rates and the averages of color indices of the regions, at last a BP neural network is used to determine if the small regions belongs to onion leaf or not. The algorithm has been applied to many images and the correct identifiable percents for onion leaves are between 80%~ 90%.
A Multi-layer Feed Forward Neural Network Approach for Diagnosing Diabetes
2018
Diabetes is one of the worlds major health problems according to the World Health Organization. Recent surveys indicate that there is an increase in the number of diabetic patients resulting in an increase in serious complications such as heart attacks and deaths. Early diagnosis of diabetes, particularly of type 2 diabetes, is critical since it is vital for patients to get insulin treatments. However, diagnoses could be difficult especially in areas with few medical doctors. It is, therefore, a need for practical methods for the public for early detection and prevention with minimal intervention from medical professionals. A promising method for automated diagnosis is the use of artificial…
Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine
2020
The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …
Artificial Neural Networks in Sports: New Concepts and Approaches
2001
Artificial neural networks are tools, which - similar to natural neural networks - can learn to recognize and classify patterns, and so can help to optimise context depending acting. These abilitie...
Efficient MLP Digital Implementation on FPGA
2005
The efficiency and the accuracy of a digital feed-forward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the High Energy Physics domain and the automatic Road Sign Recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standar…