Search results for "NEURAL NETWORK"
showing 10 items of 1385 documents
Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43
2021
AbstractGeneration of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA binding protein TDP-43 occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that olig…
Improving Speaker-Independent Lipreading with Domain-Adversarial Training
2017
We present a Lipreading system, i.e. a speech recognition system using only visual features, which uses domain-adversarial training for speaker independence. Domain-adversarial training is integrated into the optimization of a lipreader based on a stack of feedforward and LSTM (Long Short-Term Memory) recurrent neural networks, yielding an end-to-end trainable system which only requires a very small number of frames of untranscribed target data to substantially improve the recognition accuracy on the target speaker. On pairs of different source and target speakers, we achieve a relative accuracy improvement of around 40% with only 15 to 20 seconds of untranscribed target speech data. On mul…
Deep Neural Network Frontend for Continuous EMG-Based Speech Recognition
2016
Attention-based Model for Evaluating the Complexity of Sentences in English Language
2020
The automation of text complexity evaluation (ATCE) is an emerging problem which has been tackled by means of different methodologies. We present an effective deep learning- based solution which leverages both Recurrent Neural and the Attention mechanism. The developed system is capable of classifying sentences written in the English language by analysing their syntactical and lexical complexity. An accurate test phase has been carried out, and the system has been compared with a baseline tool based on the Support Vector Machine. This paper represents an extension of a previous deep learning model, which allows showing the suitability of Neural Networks to evaluate sentence complexity in tw…
Deep neural attention-based model for the evaluation of italian sentences complexity
2020
In this paper, the Automatic Text Complexity Evaluation problem is modeled as a binary classification task tackled by a Neural Network based system. It exploits Recurrent Neural Units and the Attention mechanism to measure the complexity of sentences written in the Italian language. An accurate test phase has been carried out, and the system has been compared with state-of-art tools that tackle the same problem. The computed performances proof the model suitability to evaluate sentence complexity improving the results achieved by other state-of-the-art systems.
Multi-class Text Complexity Evaluation via Deep Neural Networks
2019
Automatic Text Complexity Evaluation (ATE) is a natural language processing task which aims to assess texts difficulty taking into account many facets related to complexity. A large number of papers tackle the problem of ATE by means of machine learning algorithms in order to classify texts into complex or simple classes. In this paper, we try to go beyond the methodologies presented so far by introducing a preliminary system based on a deep neural network model whose objective is to classify sentences into more of two classes. Experiments have been carried out on a manually annotated corpus which has been preprocessed in order to make it suitable for the scope of the paper. The results sho…
Matching research and practice: Prediction of individual patient progress and dropout risk for basic routine outcome monitoring.
2021
OBJECTIVE Despite evidence showing that systematic outcome monitoring can prevent treatment failure, the practical conditions that allow for implementation are seldom met in naturalistic psychological services. In the context of limited time and resources, session-by-session evaluation is rare in most clinical settings. This study aimed to validate innovative prediction methods for individual treatment progress and dropout risk based on basic outcome monitoring. METHODS Routine data of a naturalistic psychotherapy outpatient sample were analyzed (N = 3902). Patients were treated with cognitive behavioral therapy with up to 95 sessions (M = 39.19, SD = 16.99) and assessment intervals of 5-15…
Dropping out of a transdiagnostic online intervention: A qualitative analysis of client's experiences
2017
Introduction An important concern in Internet-based treatments (IBTs) for emotional disorders is the high dropout rate from these protocols. Although dropout rates are usually reported in research studies, very few studies qualitatively explore the experiences of patients who drop out of IBTs. Examining the experiences of these clients may help to find ways to tackle this problem. Method A Consensual Qualitative Research study was applied in 10 intentionally-selected patients who dropped out of a transdiagnostic IBT. Results 22 categories were identified within 6 domains. Among the clients an undeniable pattern arose regarding the insufficient support due to the absence of a therapist and t…
What represents a face? A computational approach for the integration of physiological and psychological data.
1997
Empirical studies of face recognition suggest that faces might be stored in memory by means of a few canonical representations. The nature of these canonical representations is, however, unclear. Although psychological data show a three-quarter-view advantage, physiological studies suggest profile and frontal views are stored in memory. A computational approach to reconcile these findings is proposed. The pattern of results obtained when different views, or combinations of views, are used as the internal representation of a two-stage identification network consisting of an autoassociative memory followed by a radial-basis-function network are compared. Results show that (i) a frontal and a…
Interpretability of Recurrent Neural Networks in Remote Sensing
2020
In this work we propose the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for multivariate time series of satellite data for crop yield estimation. Recurrent nets allow exploiting the temporal dimension efficiently, but interpretability is hampered by the typically overparameterized models. The focus of the study is to understand LSTM models by looking at the hidden units distribution, the impact of increasing network complexity, and the relative importance of the input covariates. We extracted time series of three variables describing the soil-vegetation status in agroe-cosystems -soil moisture, VOD and EVI- from optical and microwave satellites, as well as available in si…