Search results for "NEURONS"
showing 10 items of 1969 documents
The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons
2017
N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …
Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material
2017
Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrit…
Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.
2015
Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…
NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons
2017
N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …
Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies
2017
Environmental exposure to methylmercury (MeHg) during development is of concern because it is easily incorporated in children’s body both pre- and post-natal, it acts at several levels of neural pathways (mitochondria, cytoskeleton, neurotransmission) and it causes behavioral impairment in child. We evaluated the effects of prolonged exposure to 10–600 nM MeHg on primary cultures of mouse cortical (CCN) and of cerebellar granule cells (CGC) during their differentiation period. In addition, it was studied if prenatal MeHg exposure correlated with altered antioxidant defenses and cofilin phosphorylation in human placentas (n = 12) from the INMA cohort (Spain). Exposure to MeHg for 9 days in v…
Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies
2018
Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implic…
Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting.
2016
Summary Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1–4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we…
Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.
2016
Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…
Targeting CD52 does not affect murine neuron and microglia function.
2020
The humanized anti-CD52 antibody alemtuzumab is successfully used in the treatment of multiple sclerosis (MS) and is thought to exert most of its therapeutic action by depletion and repopulation of mainly B and T lymphocytes. Although neuroprotective effects of alemtuzumab have been suggested, direct effects of anti-CD52 treatment on glial cells and neurons within the CNS itself have not been investigated so far. Here, we show CD52 expression in murine neurons, astrocytes and microglia, both in vitro and in vivo. As expected, anti CD52-treatment caused profound lymphopenia and improved disease symptoms in mice subjected to experimental autoimmune encephalomyelitis (EAE). CD52 blockade also …
Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis.
2017
Epigenetic regulators are increasingly recognized as relevant modulators in the immune and nervous system. The class of sirtuins consists of NAD+-dependent histone deacetylases that regulate transcription. Sirtuin family member Sirt1 has already been shown to influence the disease course in an animal model of autoimmune neuroinflammation (experimental autoimmune encephalomyelitis (EAE). A role of Sirt7, a related epigenetic regulator, on immune system regulation has been proposed before, as these mice are more susceptible to develop inflammatory cardiomyopathy. Sirt7-/- animals showed no differences in clinical score compared to wild-type littermates after EAE induction with myelin oligoden…