Search results for "NIV"

showing 10 items of 7213 documents

Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB

2017

Co-auteur étranger; International audience; Located on Halmahera island, Dukono is among the least known volcanoes in Indonesia. A compilation of the rare available reports indicates that this remote and hardly accessible volcano has been regularly in eruption since 1933, and has undergone nearly continuous eruptive manifestation over the last decade. The first study of its gas emissions, presented in this work, highlights a huge magmatic volatile contribution into the atmosphere, with an estimated annual output of about 290 kt of SO2, 5000 kt of H2O, 88 kt of CO2, 5 kt of H2S and 7 kt of H2. Assuming these figures are representative of the long-term continuous eruptive activity, then Dukon…

010504 meteorology & atmospheric sciencesDepleted mantle sourceLavaEarth sciencedegassing budget[ SDU.STU.VO ] Sciences of the Universe [physics]/Earth Sciences/Volcanology010502 geochemistry & geophysics01 natural sciencesMantle (geology)Geochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistryevolution[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyDukono VolcanoSedimentologyComputingMilieux_MISCELLANEOUSMagma source0105 earth and related environmental sciencesDukono volcanogeographygeography.geographical_feature_categorySubductionGas emissionsmagma source evolution[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/GeochemistryVolcanodepleted mantle sourceDegassing budget13. Climate actionGeology
researchProduct

Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives

2016

International audience; Nitrogen isotope compositions in sedimentary rocks (d(15)N(sed)) are routinely used for reconstructing Cenozoic N-biogeochemical cycling and are also being increasingly applied to understanding the evolution of ancient environments. Here we review the existing knowledge and rationale behind the use of d(15)N(sed) as a proxy for the Precambrian N-biogeochemical cycle with the aims of (i) identifying the major uncertainties that affect analyses and interpretation of nitrogen isotopes in ancient sedimentary rocks, (ii) developing a framework for interpreting the Precambrian d(15)N(sed) record, (iii) testing this framework against a database of Precambrian d(15)N(sed) va…

010504 meteorology & atmospheric sciencesEarth scienceNitrogen isotopesMetamorphismGeologyNitrogen biogeochemical cycle010502 geochemistry & geophysicsEarly Earth01 natural sciencesIsotopes of nitrogenDiagenesisPaleontologyPrecambrianGeologic time scale13. Climate actionGeochemistry and Petrology[SDU]Sciences of the Universe [physics]Ocean oxygenationSedimentary rock14. Life underwaterPrecambrianCenozoicGeology[ SDU ] Sciences of the Universe [physics]0105 earth and related environmental sciences
researchProduct

Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

2012

International audience; Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO 2 , raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2) Fossils…

010504 meteorology & atmospheric sciencesEffects of global warming on oceansocean acidification010502 geochemistry & geophysics01 natural sciencesEcosystem services14. Life underwaterPermian–Triassic extinction event0105 earth and related environmental sciences[ SDU.STU.PG ] Sciences of the Universe [physics]/Earth Sciences/PaleontologyHigh rateend-Permian extinctionocean acidification; end-Permian extinction; microbialite; ocean buffer; stylolitestylolitelcsh:QE1-996.5fungiBiotaOcean acidificationlcsh:GeologyOceanographymicrobialite13. Climate actionSubaerialGeneral Earth and Planetary SciencesSedimentary rock[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/Paleontologyocean bufferGeologygeographic locations
researchProduct

Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): a biomarker approach.

2007

20 pages; International audience; The Purbeck-type section (Durlston Bay, Dorset, UK) exhibits littoral lagoonal to lacustrine facies. It shows a gradual climatic/environmental change from semi-arid conditions associated with evaporites at the Jurassic–Cretaceous transition, to a more humid climate at the end of the Berriasian. Though generally organic-poor (total organic carbon, TOC, <1.3%), the Durlston Bay section shows an organic-rich episode (TOC up to 8.5%) located at the transition from evaporitic to more humid facies. A biomarker study was performed in order to determine the origin of the organic matter (OM) in the section and see if changes in organic sources accompanied the genera…

010504 meteorology & atmospheric sciencesEnvironmental change[SDE.MCG]Environmental Sciences/Global ChangesBotryococcus010502 geochemistry & geophysics[ SDU.STU.ST ] Sciences of the Universe [physics]/Earth Sciences/Stratigraphy01 natural sciences[ SDE.MCG.CPE ] Environmental Sciences/Global Changes/domain_sde.mcg.cpeBottom waterSteranechemistry.chemical_compoundGeochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry0105 earth and related environmental sciencesTotal organic carbonbiologyEcology15. Life on landbiology.organism_classification[SDE.MCG.CPE]Environmental Sciences/Global Changes/domain_sde.mcg.cpe[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/Geochemistry6. Clean waterCretaceousPalynofacies[ SDE.MCG ] Environmental Sciences/Global Changeschemistry13. Climate action[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/StratigraphyBayGeology
researchProduct

Impact of basin burial and exhumation on Jurassic carbonates diagenesis on both sides of a thick clay barrier (Paris Basin, NE France).

2014

27 pages; International audience; Several diagenetic models have been proposed for Middle and Upper Jurassic carbonates of the eastern Paris Basin. The paragenetic sequences are compared in both aquifers to propose a diagenetic model for the Middle and Late Jurassic deposits as a whole. Petrographic (optical and cathodoluminescence microscopy), structural (fracture orientations) and geochemical (δ18O, δ13C, REE) studies were conducted to characterize diagenetic cements, with a focus on blocky calcite cements, and their connection with fracturation events. Four generations of blocky calcite (Cal1-Cal4) are identified. Cal1 and Cal2 are widespread in the dominantly grain-supported facies of t…

010504 meteorology & atmospheric sciencesEvaporiteCarbonateStratigraphyGeochemistryJurassic[ SDU.STU.ST ] Sciences of the Universe [physics]/Earth Sciences/Stratigraphy010502 geochemistry & geophysicsOceanography01 natural sciencesDiagenesisPetrographyOxygen and carbon isotopesPaleontologychemistry.chemical_compoundParis Basin[ SDU.STU.MI ] Sciences of the Universe [physics]/Earth Sciences/MineralogyRare earth elements0105 earth and related environmental sciencesCalciteGeologyCementation (geology)6. Clean waterCretaceousDiagenesisGeophysicschemistry[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/StratigraphyFaciesEconomic GeologyPaleogeneGeology[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy
researchProduct

THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

2020

This is an open access article.-- Full list of authors: Broderick, Avery E.; Gold, Roman; Karami, Mansour; Preciado-López, Jorge A.; Tiede, Paul; Pu, Hung-Yi; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Cho, Ilje; Conway, John E.; Cordes, James M.; Crew, Geoffrey B.; Cu…

010504 meteorology & atmospheric sciencesExploitAstronomy01 natural sciencesData typeSet (abstract data type)Galactic center0103 physical sciencesVery-long-baseline interferometry16471769010303 astronomy & astrophysics0105 earth and related environmental sciencesVery long baseline interferometryPhysicsEvent Horizon TelescopeSupermassive black holeAstrophysical black holesGalactic CenterAstronomy and Astrophysics98565Black hole[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstronomy data analysis1858[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]AlgorithmSubmillimeter astronomy
researchProduct

Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

2015

International audience; After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intr…

010504 meteorology & atmospheric sciencesExplosive materialLava010502 geochemistry & geophysics01 natural sciencesImpact craterGeochemistry and PetrologyThermal[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyThermal anomalies0105 earth and related environmental sciencesHot springgeographygeography.geographical_feature_categoryExtrusion rates; earthquake; MIROVA; Thermal anomalies; Ubinas; Geochemistry and Petrology; GeophysicsMIROVAGeophysicsVolcano13. Climate actionUbinasearthquakeMagmaSatelliteExtrusion ratesSeismologyGeology
researchProduct

Astrometric detection of a low-mass companion orbiting the star AB Doradus

1997

International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…

010504 meteorology & atmospheric sciencesGalactic astronomyStellar massBrown dwarfAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesstars: low-mass0103 physical sciencesVery-long-baseline interferometryAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsstars: individual (AB Doradus)[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrometryInterferometrySpace and Planetary Sciencetechniques: interferometricOrbital motionastrometryAstrophysics::Earth and Planetary Astrophysics[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]stars: kinematicsLow Massbrown dwarfs
researchProduct

Noble gas magmatic signature of the Andean Northern Volcanic Zone from fluid inclusions in minerals

2021

Trace volatile elements like He are key for understanding the mantle source signature of magmas and to better constrain the relative roles of subduction and crustal processes to the variability of along-arc chemical and isotopic signatures of magmatic fluids. Here we report on noble gas abundances and isotopic data of Fluid Inclusions (FIs) in eruptive products and/or fumarolic gases from the Colombia-Ecuador segment of Andean Northern Volcanic Zone (NVZ). FIs in olivine phenocrysts from Ecuador (El Reventador, Cotopaxi and Tungurahua) yield air-normalized corrected He-3/He-4 ratios of 7.0-7.4 R-A, within the MORB range (8 +/- 1 R-A). With exception of the Cotopaxi lavas (opx = 50 km at the…

010504 meteorology & atmospheric sciencesGeochemistryAndean Volcanic Belt Helium voclanic gases Crustal thickness Fluid inclusions Helium Noble gases Northern Volcanic Zoneengineering.material010502 geochemistry & geophysics01 natural sciencesHeliumMantle (geology)Noble gaseGeochemistry and Petrology[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyCrustal thickneFluid inclusions[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentVolatilesFluid inclusions0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryOlivineSubductionGeologyNorthern Volcanic ZoneFluid inclusionNoble gasesCrustal thicknessVolcanoAndean Volcanic BeltengineeringPhenocrystGeology
researchProduct

Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central)

2018

The Limagne Basin (French Massif Central) is an extensive continental lacustrine system accommodating microbial and metazoan buildups from Chattian to Aquitanian age. A description of these buildups and their associated biotic components in Grand Gandaillat and Crechy quarries provides insights into their spatio-temporal distribution patterns. Flats, cauliflowers, domes, cones and coalescent columnar morphologies have been identified with a main laminated mesofabric and laminated, columnar, filamentous and caddisfly-coated microfabrics. Two low-gradient margin models emerged based on the changes in the distribution, morphology and size of the microbial and metazoan-rich deposits through tim…

010504 meteorology & atmospheric sciencesGeochemistryCarbonatesVolcanismEcological successionStructural basin010502 geochemistry & geophysicsOceanography01 natural sciencesVolcanismMarlCycle ClimateEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categoryPaleontologyMassif15. Life on landTectonicTectonicsVolcanoSedimentary rockLacustrine/palustrine[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/PaleontologyGeology
researchProduct